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Abstract. Deep neural networks have significantly improved volumet-
ric medical segmentation, but they generally require large-scale anno-
tated data to achieve better performance, which can be expensive and
prohibitive to obtain. To address this limitation, existing works typi-
cally perform transfer learning or design dedicated pretraining-finetuning
stages to learn representative features. However, the mismatch between
the source and target domain can make it challenging to learn optimal
representation for volumetric data, while the multi-stage training de-
mands higher compute as well as careful selection of stage-specific design
choices. In contrast, we propose a universal training framework called
MedContext that is architecture-agnostic and can be incorporated into
any existing training framework for 3D medical segmentation. Our ap-
proach effectively learns self-supervised contextual cues jointly with the
supervised voxel segmentation task without requiring large-scale anno-
tated volumetric medical data or dedicated pretraining-finetuning stages.
The proposed approach induces contextual knowledge in the network by
learning to reconstruct the missing organ or parts of an organ in the
output segmentation space. The effectiveness of MedContext is validated
across multiple 3D medical datasets and four state-of-the-art model ar-
chitectures. Our approach demonstrates consistent gains in segmentation
performance across datasets and architectures even in few-shot scenarios.
Our code is available at https://github.com/hananshafi/medcontext

Keywords: Volumetric medical segmentation · Masked image modeling
· Knowledge distillation

1 Introduction

Deep neural networks have greatly improved volumetric medical segmentation.
The convolutional encoder-decoder networks, U-NET [26,9], as well as the de-
velopment of vision transformers [12], has led to hybrid architectures [20,4] with
complementary strengths of self-attention and convolution for medical segmenta-
tion. Despite the architectural advances, deep neural networks generally require
large-scale annotated data to achieve better performance. However, collecting
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Fig. 1. Qualitative Comparison between the baseline nnFormer and our proposed Med-
Context integrated with nnFormer. The examples display different abdominal organs
(Synapse) (Left) and regions of the heart (ACDC) (Right), with their labels in the
legend below. The baseline nnFormer struggles to accurately segment the organs and
heart regions, giving false segmentation results highlighted in red boxes. Best viewed
zoomed in. Refer to supplementary material for additional qualitative comparisons.

and annotating medical images at a large scale can be expensive and prohibitive
due to privacy concerns.

To deal with the data scarcity, weights learned on ImageNet [10] can be
used to initialize the encoder, however, pre-training on 2D natural images may
not capture the contextual information essential to understanding 3D medical
images. Recent studies [15,17,28] explore self-supervised pre-training on extra
auxiliary medical data, but this approach has two limitations: a) it involves
a computationally expensive two-stage pre-training process on auxiliary data
followed by fine-tuning on target data, and b) the success of fine-tuning depends
on how well the auxiliary data distribution matches the target data. Moreover,
there may not be a direct relationship between the self-supervised objectives and
voxel-wise segmentation. Therefore jointly optimizing such self-supervised losses
with 3D segmentation is non-trivial.

To address these limitations, we propose a generic training framework dubbed
MedContext to learn self-supervised contextual cues jointly with supervised voxel
segmentation without requiring large-scale annotated volumetric medical data.
Our approach involves reconstructing masked organs or organ parts in the out-
put segmentation space. This reconstruction aligns well with the voxel-wise pre-
diction task, enabling joint optimization of both tasks. To further reduce the
disparity between the two tasks, we deploy a student-teacher distillation strat-
egy [25,5,19] to guide reconstruction from a slow-moving online teacher model
which also helps avoid representation collapse. Predicting the representation of
an input from a representation of another input leads to versatile visual repre-
sentations [2]. MedContext encourages contextual learning within the model and
allows it to learn local-global relationships between different input components.
This leads to better segmentation of organ boundaries (see Fig. 1).
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Fig. 2. Overview of our MedContext approach: The original 3D volume is masked and
fed to the student model (top-row) along with the original input. The teacher model
(bottom-row) is only fed with the original volume. The difference between the semantic
voxelwise predictions for the masked and original inputs corresponding to the student
and teacher networks respectively is minimized to guide the reconstruction of masked
regions in the output segmentation space.

Our proposed approach is architecture-agnostic and can be incorporated into
any training framework, making it universally applicable. We integrate our ap-
proach into three recent state-of-the-art medical 3D transformer based architec-
tures: UNETR [16], SwinUNETR [15] and nnFormer [30]; and one CNN based
3D architecture PCRLv2 [31]. Using these architectures, we validate our ap-
proach across three medical imaging datasets: Multi-organ Synapse [21], ACDC
[3] and BraTS [22,1]. Our evaluation reveals consistent performance improve-
ments across all compared methods. In summary, our contributions are three-
fold: (1) We propose a universal training framework to jointly optimize super-
vised segmentation and self-supervised segmentation reconstruction via student-
teacher knowledge distillation. (2) Our approach induces contextual knowledge
in the model by learning to reconstruct the missing organ or organ parts in the
output segmentation space. (3) We validate the effectiveness of our approach
across multiple 3D medical datasets and state-of-the-art model architectures.

2 Methodology

2.1 Architecture

Our approach is complementary and can be applied to the existing encoder-
decoder architectures designed for 3D medical image segmentation. As shown in
Fig. 2 our design includes a student Fs and a teacher network Ft that operate
on the input volume X ∈ RH×W×D and its masked version XM ∈ RH×W×D

generated using the masking function g(.). Here, H, W , and D represent the
height, width, and depth of the 3D volume, respectively. During the training
phase, the input views are fed to the student-teacher framework as 3D patches,
generating voxel-wise semantic logits for each input view. The student network
is provided with both the masked (XM ) and unmasked (X) inputs, and the
corresponding output voxel-wise semantic logits are denoted as Fs and FM

s ,
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respectively. On the other hand, the teacher network is provided with the original
unmasked input X which outputs voxel-wise semantic logits denoted as Ft.
The feature map produced at intermediate layers of the 3D architecture has a
shape of H

P1
× W

P2
× D

P3
× C, where (P1, P2, P3) is the resolution of each patch

and C is the feature dimension. For each output prediction from the student,
a supervised loss is computed using the ground truth label Y , as shown in the
figure. Additionally, a self-supervised objective is minimized between the masked
student logits FM

s and the teacher logits Ft. Finally, both the supervised and self-
supervised objectives are jointly optimized during single-stage training process.

2.2 Volumetric Masking Strategy

To model contextual relationships, we employ a masking technique on the patch
tokens of the original input X to reconstruct missing parts in the segmentation
space. We ensure mask consistency across the depth to prevent information
leakage from neighboring cubes by applying the same mask to all subsequent
slices in the volume as shown in Fig. 2. To generate a masked view XM , we
randomly mask a certain fraction δ of the patch tokens. Following [11], the
masked tokens are replaced with learnable tokens Hξ, such that,

XM = g(X, δ) = X ◦ (1− Iδ) +Hξ ◦ Iδ, (1)

where Iδ is a binary mask generated according to a Bernoulli distribution using
g(.), i.e., Iδ ∼ Bernoulli(δ) and ◦ denotes the element-wise product.

2.3 Voxel-wise Segmentation Reconstruction

We utilize masked input to reconstruct segmentation maps, facilitating the learn-
ing of contextual semantic relationships. To achieve this, we employ a student-
teacher strategy where teacher weights are updated by a moving average of the
student weights. Leveraging cumulative knowledge from prior weight updates
enhances masked view reconstruction and induces enriched contextual cues. The
teacher network provides soft semantic targets, guiding student network training.
Both the student model Fs and teacher model Ft begin with the same randomly
initialized weight parameters. The student network processes both original and
masked inputs, while the teacher network only receives the original non-masked
input. The networks generate voxel-wise semantic logits, represented by {FM

s ,
Fs} and Ft respectively. Subsequently, we reconstruct semantic voxel-wise logits
of the masked input from the student model, guided by two supervised signals:
supervision through knowledge distillation and ground truth labels.

Reconstruction through Knowledge Distillation: A self-supervised dis-
tillation loss (Eq. 2) is used to guide the training of the student network to
encourage modeling the contextual consistency. It minimizes the difference be-
tween the voxel-wise logits Ft generated by the teacher network given the original
input X and the voxel-wise logits FM

s produced by the student network using
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the masked input XM . The objective function, referred to as Consistency Loss
(CL), is denoted as Lc(F

M
s ,Ft) and is expressed as,

Lc(F
M
s ,Ft) =

∥ FM
s − Ft∥ 2

2

∥ Ft∥ 2
2

. (2)

Reconstruction through Ground truth Labels: The voxel-wise semantic
logits FM

s output by the student for XM are further reconstructed using the
ground truth labels. This is achieved by minimizing the soft dice loss [23] using
the ground truth labels Y . The general expression for Dice-CE Loss for some
arbitrary output prediction F is given as,

LDice−CE(Y ,F ) = 1−
C∑

c=1

(
2 ∗
∑V

v=1 Yv,c · Fv,c∑V
v=1 Y

2
v,c +

∑V
v=1 F

2
v,c

+
V∑

v=1

Yv,c logFv,c

)
, (3)

where, C denotes the number of classes; V denotes the number of voxels; Yv,i and
Fv,i denote the ground truths and output probabilities for class i at voxel v, re-
spectively. In our case, the supervised reconstruction objective is calculated using
above Dice-CE loss between the ground truth label Y and voxel-wise semantic
logits FM

s and is denoted as LDice−CE(Y ,FM
s ) and referred to as Masked Stu-

dent Loss (MSL). Both CL and MSL encourage the network to capture intricate
relationships between various organs.

2.4 Supervised Voxel-wise Segmentation

Our primary task of supervised voxel-wise segmentation takes place in conjunc-
tion with the voxel-wise segmentation reconstruction as discussed above. For
the supervised voxel-wise segmentation, we optimize the predictions of the of
the student network Fs on X through the supervision of the ground truth labels
Y using Soft Dice Loss (Eq. 3) denoted by the objective LDice−CE(Y ,Fs).

2.5 Overall Multi-task Objective

Our framework leverages a combination of supervised and self-supervised losses
for optimization, synergistically reinforcing each other to offer complementary
advantages. The overall loss objective L is defined as,

L = LDice−CE(Y ,Fs) + LDice−CE(Y ,FM
s ) + βLc(F

M
s ,Ft), (4)

where the hyperparameter β controls the contribution of self-supervised consis-
tency loss during optimization.

2.6 Optimization strategy

Following a typical student-teacher optimization strategy as ultilized by [13,5],
the gradient of the total loss is backpropagated through the student network
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and parameters are updated as: Θ ← Θ − α · ∇Θ(L), where Θ represents the
joint parameters of student network (θs) and learnable mask embeddings (ξ)
i.e. Θ = {θs; ξ}. The teacher network is updated via exponential moving average
(EMA) of the weights of the student network using: θt ← λθt+(1−λ)θs, where θt
denote the parameters of teacher and λ follows the cosine schedule from 0.996 to 1
during training. The gradient step through the student network comprises of the
contributions from both the supervised and self-supervised objectives, thereby
aiding in the reconstruction of the masked input by updating the differentiable
volumetric embeddings associated with the masked regions.

3 Experiments

Datasets: We evaluate on three volumetric medical datasets. Synapse BTCV:
The synapse BTCV dataset [21] for multi-organ CT Segmentation, includes ab-
dominal CT scans of 30 subjects. We adopt the dataset split of [6] with 18 train
and 12 test samples. We evaluate the performance on eight abdominal organs.
ACDC: The ACDC dataset [3] is a collection of cardiac MRI images and asso-
ciated segmentation annotations for the right ventricle (RV), left ventricle (LV),
and myocardium (MYO) of 100 patients. We split the dataset into 80 training
and 20 testing samples following [30]. BraTS: We use two versions of BraTS
dataset: BraTS17 [22] and BraTS21 [1]. For UNETR, SwinUNTER and PCRLv2
we report results on the BraTS21 dataset to be consistent with the baseline. The
BraTS21 dataset includes 1251 subjects with annotations for three sub-regions:
Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET). Following
[15], we train on 1000 subjects and test on 251 subjects. For nnFormer, we use
BraTS17 dataset comprising of 484 MRI images. Following [30], we train on 387
samples and test on 73 cases. Evaluation Metrics: To evaluate the models’
performance, we utilize two metrics: the Dice Similarity Score (DSC) and the
95% Hausdorff Distance (HD95). Training and Implementation details: Our
approach utilizes Pytorch version 1.10.1 in conjunction with MONAI libraries
[24] for implementation. Specifically, we use an input size of 128 × 128 × 64
for all datasets when training with nnFormer, and 96 × 96 × 96 for UNETR,
SwinUNTER and PCRLv2. All models are trained on a single A100 40GB GPU.

3.1 Comparison with state-of-the-art Baselines

Synapse BTCV Dataset: Table 1 shows the results on the synapse multi-organ
dataset. UNETR with our approach achieves 2.5% higher Dice Score (81.13%)
than the baseline (78.76%), and over 1% reduction in HD95 score. With hierar-
chical SwinUNETR, Dice Score increases by >1% (80.66% to 82.00%) and HD95
improves. Similar trend is observed with nnFormer. ACDC Dataset: Table 2
presents results on the larger ACDC dataset. UNETR with our approach outper-
forms the baseline by about 4% in Dice score (80.60% vs. 76.67%). SwinUNETR
shows over 2.5% Dice score improvement, and nnFormer achieves a Dice score
of 90.73% compared to the baseline’s 90.50%. Per organ dice scores are also
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Table 1. Abdominal multi-organ Synapse: Our MedContext consistently improves the
segmentation performance of all organs across different models. We observe significant
improvements in HD95 along with the dice score (DSC). Best results in bold.

Models MedContext Spleen Right Kidney Left Kidney Gallbladder Liver Stomach Aorta Pancreas Average

HD95 ↓ DSC ↑

UNETR ✗ 89.64 83.02 84.86 63.06 95.58 73.06 87.47 53.40 11.04 78.76
✓ 90.73 83.36 86.03 67.94 95.59 78.62 87.30 59.51 9.44 81.13

Swin-UNETR ✗ 86.33 80.63 84.07 67.24 94.98 74.97 90.53 66.49 20.32 80.66
✓ 91.45 80.80 84.85 67.70 94.60 76.20 90.88 67.74 14.45 82.00

nnFormer ✗ 90.51 86.25 86.57 70.17 96.84 86.83 92.04 83.35 10.63 86.57
✓ 95.97 87.05 87.63 72.87 96.43 84.57 91.85 82.40 8.29 87.35

Table 2. ACDC: We report
DSC on RV, LV and MYO.

Models MedContext RV Myo LV Average

UNETR ✗ 77.81 72.74 79.46 76.67
✓ 84.77 75.82 81.21 80.60

SwinUNETR ✗ 83.47 75.54 83.09 80.70
✓ 84.79 79.17 86.15 83.38

nnFormer ✗ 91.18 86.24 94.07 90.50
✓ 92.14 86.52 93.52 90.73

Table 3. BraTS: We report
DSC on 3 brain tumour types

Models MedContext WT ET TC Average

UNETR ✗ 87.35 90.88 84.29 87.50
✓ 87.43 91.45 85.23 88.04

SwinUNETR ✗ 90.36 91.72 86.24 89.44
✓ 90.57 92.30 86.64 89.83

nnFormer ✗ 80.80 58.86 77.42 72.36
✓ 81.00 59.87 77.45 72.78

Table 4. Few-shot set-
tings (5 train samples).

Models MedContext Synapse ACDC

UNETR ✗ 53.83 18.53
✓ 56.25 28.63

SwinUNETR ✗ 54.13 32.62
✓ 61.15 35.80

nnFormer ✗ 67.90 52.23
✓ 70.96 58.05

Table 5. MedContext vs. pretraining-finetuning
[8] methods. DSC (%) on Synapse dataset with
UNETR architecture. Best viewed zoomed in.
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Baseline ✗ 89.0 89.2 87.7 47.6 48.9 94.4 74.7 82.0 77.3 61.7 64.4 56.6 46.9 70.8

SimCLR ✓ 91.1 91.3 89.7 48.7 50.0 96.6 76.5 83.9 79.1 63.2 65.9 57.9 48.1 72.4
MAE ✓ 94.8 95.0 93.4 50.6 52.1 98.6 79.7 87.4 82.4 65.9 68.6 60.5 50.1 75.3
SimMIM ✓ 95.2 95.4 93.7 51.9 52.3 98.7 79.9 87.7 82.6 66.0 68.9 60.7 51.2 75.7

MedContext ✗ 93.8 93.7 93.6 54.9 72.6 96.6 80.3 89.9 83.3 72.9 73.9 64.4 65.3 79.6

Table 6. Improving PCRLv2
with our proposed MedContext
without pretraining across three
datasets. We report Average Dice
scores (%).

Method Pretrain Brats21 ACDC Synapse

PCRLv2 ✓ 79.90 78.53 64.00
PCRLv2 + MedContext ✗ 82.03 82.57 72.30

higher with our approach in each case. BraTS Dataset: Table 3 demonstrates
that UNETR yields a 0.54% increase in the overall DSC compared to baseline.
SwinUNTER achieves a DSC of 89.83%, surpassing the baseline DSC 89.44%.
Additionally, nnFormer exhibits an improvement in the overall DSC (72.78%)
compared to the baseline DSC (72.36%). Overall we show that our approach
achieves gains even on larger datasets such as BraTS, but has more pronounced
improvement for the low-data setups. See further results in Supplementary.

3.2 Few-shot performance

We validate our approach in a few-shot scenario in Table 4, comparing its perfor-
mance with baselines in a 5-shot setting on synapse BTCV and ACDC datasets
using three model architectures. Specifically, on synapse, our approach yields a
3-10% increase in Dice score across all cases, indicating substantial segmenta-
tion accuracy improvement. Similarly, on the larger ACDC dataset, our approach
consistently achieves higher Dice scores compared to baselines, highlighting its
potential for enhancing segmentation accuracy in situations with limited anno-
tated data and supporting data-efficient training.
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Table 7. Effect of each loss
component. We report avg
dice score (%).

MSL CL Average Dice Score

UNETR SwinUNETR

✓ ✗ 78.69 81.03
✗ ✓ 79.46 81.25
✓ ✓ 80.32 81.70

Table 8. Effect of mask-
ing ratio. We report aver-
age DSC (%).

Masking ratio Average Dice Score

UNETR SwinUNETR

30% 79.54 80.92
40% 80.47 82.00
50% 80.00 81.03
60% 80.20 81.70
80% 79.90 81.27

Table 9. Effect of knowl-
edge distillation for lever-
aging contextual cues.

Models Student-Teacher Average DSC

UNETR ✗ 79.60
✓ 81.13

SwinUNETR ✗ 80.83
✓ 82.03

nnFormer ✗ 86.85
✓ 87.36

3.3 Comaprison with Pretraining-Finetuning Baselines

We demonstrate the effectiveness of MedContext by comparing its performance
(DSC) with existing pretraining-finetuning methods in Table 5. The baseline
[8] utilizes improved weight initialization through pretraining on a large dataset
[14], incorporating state-of-the-art self-supervised methods [7,29,18], and then
fine-tunes on the target dataset. In contrast, MedContext directly learns con-
textual cues from the small target dataset, outperforming methods using the
pretraining-finetuning paradigm. When integrated into PCRLv2 [31], a 3D CNN
architecture pretrained in a self-supervised manner on [27], MedContext consis-
tently enhances the performance (Avg. DSC) of PCRLv2 without pretraining as
seen in Table 6, affirming its versatility applicable to various CNN architectures.

3.4 Ablation Studies

Effect of different losses: Our proposed method incorporates multiple super-
vised and self-supervised losses during training as elaborated in Sections 2.3 and
2.4. We perform an ablative analysis on the synapse dataset, focusing on the
Masked Student Loss (MSL) and Consistency Loss (CL) in Table 7. Eliminating
either loss component leads to a decrease in DSC, underscoring the mutual syn-
ergy between these losses in inducing contextual cues for effective 3D medical
segmentation. Effect of Student-Teacher framework: Using a single model
for both original and masked input using supervised loss may not effectively
capture contextual relationships as it overlooks knowledge acquired during pre-
vious weight updates. To address this, we adopt a student-teacher framework,
leveraging information from past updates. Table 9 illustrates our claim with
empirical evidence on the synapse dataset, showing a consistent performance
drop without the student-teacher framework. Effect of masking ratio: Our
method encourages learning contextual cues by reconstructing masked regions
in the segmentation space. The fraction of patches to be masked for reconstruc-
tion may influence the model’s performance. Our approach produces gains on
all masking ratios, however, our analysis in Table 8 reveals a 40% masking ratio
to be optimal for learning contextual cues.
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4 Conclusion

In this paper, we propose a universal training framework called MedContext
which effectively learns self-supervised contextual cues jointly with the super-
vised voxel segmentation task without requiring large-scale annotated volumet-
ric medical data. Our proposed approach employs a student-teacher distilla-
tion strategy to reconstruct missing parts in the output segmentation space.
Through extensive experimentation, our approach demonstrates complementary
benefits to existing 3D medical segmentation architectures in both conventional
and few-shot settings without pretraining on large-scale datasets. Moreover, the
plug-and-play design of our approach allows for its easy integration into any
architectural design.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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