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Abstract. This study presents a novel approach for automating nutri-
tional status assessments in children, designed to assist health work-
ers in public health contexts. We introduce “DomainAdapt,” a novel
dynamic task-weighing method within a multitask learning framework,
which leverages domain knowledge and Mutual Information to balance
task-specific losses, enhancing the learning efficiency for nutritional sta-
tus screening. We have also assembled an unprecedented dataset com-
prising 16,938 multipose images and anthropometric data from 2,141
children across various settings, marking a significant first in this do-
main. Through rigorous testing, this method demonstrates superior per-
formance in identifying malnutrition in children and predicting their
anthropometric measures compared to existing multitask learning ap-
proaches. Dataset is available at : iab-rubric.org/resources/healthcare-
datasets/anthrovision-dataset

Keywords: Malnourishment · Multi-task Loss Balancing · Anthropom-
etry · Public Health.

1 Introduction

In the context of malnutrition detection, traditional methods include measur-
ing height, weight, gender, Mid-Upper Arm Circumference (MUAC), and age
(anthropometric measurements), recorded by trained healthcare professionals.
These measurements are utilized to assess nutritional status indicators such as
stunting, wasting, and underweight conditions based on weight-for-age (WFA),
height-for-age (HFA), and BMI-for-age (BMI-forage) Z-scores. Following the
World Health Organization (WHO) and Centers for Disease Control and Pre-
vention(CDC) guidelines and growth charts, these assessments categorize each
child as ‘Healthy’ or ‘Unhealthy’ [23,11]. However, these screening methods pose
challenges in terms of the subjectivity of the worker, the time-consuming pro-
cess of measuring each aspect one by one and the lack of scalability [16,17,4,1].
Researchers have explored machine learning (ML) based techniques on the point
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Fig. 1: Visual Representation of the developed Nutritional Status Screening
Framework using DomainAdapt training. Input: Multipose images of the child,
fed into a multitask model. Output: a detailed nutritional status assessment,
including height, weight, MUAC, head circumference, age, BMI, and classifica-
tions for wasting, BMI status, and overall undernutrition

after recording the measurements that offer improved child malnutrition screen-
ing [12,13,20,6,15,7], however, they still suffer from the long and non-trivial re-
quirement of recording each measurement one by one.

With the emergence of computer vision (CV) and artificial intelligence (AI)
technologies, it is now possible to generate the aforementioned measurements
from an image of a person [5,22]. Nonetheless, in such traditional techniques,
issues like handling variations in camera distance, human orientation, and body
posture often lead to inaccuracies in estimating the anthropometric measure-
ments. These methods rely on pixel-based analysis, which struggles to account
for the 3-D nature of human bodies and their diverse poses. Additionally, inte-
grating multiple features such as face, body, and deep features into a cohesive
model is challenging and computationally intensive [10,2,8]. To address these
limitations, Multitask Learning (MTL) offers a more robust solution by simul-
taneously training the model on related tasks, thereby improving generalization
and efficiency. In MTL, dynamic task weighting, such as uncertainty-based and
gradient normalisation based methods, optimizes task influence and learning ef-
ficiency, reflecting a shift towards adaptive, responsive MTL systems [19,21].
Therefore, MTL allows for shared learning across tasks, enhancing the model’s
ability to handle variability in input data and improving overall performance
in estimating the anthropometric measurements from images. However, research
is hampered by the lack of comprehensive datasets, particularly for multi-pose
image analysis, which is critical for reducing misclassification [25,18].

To address these challenges, this study aims to explore a new avenue of MTL
based on shared information between the layers in enabling automated nutri-
tional status screening for children based on their images, as shown in Figure 1.
We test the proposed MTL approach by plugging it in a custom made dual-
branched multitask model that employs VGG-19 for regression based anthropo-
metric measurement extraction and ResNet-18 for classification. We highlight
the use of domain knowledge and mutual information to enhance automation by
increasing model efficiency and scalability despite the scarcity of literature and
datasets. Hence, the developed framework does not require the health worker to
have prior training aiding the under-resourced and remote areas. The contribu-
tions can be summarised as follows.
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– Introduced “DomainAdapt”, a dynamic MTL based training technique that
optimizes task balance by integrating domain knowledge and Mutual Infor-
mation, available open-source.

– Developed a DomainAdapt-based model for testing and evaluating the pro-
posed MTL based technique for nutritional status screening from children’s
multi-pose images.

– Compiled a comprehensive dataset, named “AnthroVision” with diverse multi-
pose child images and detailed anthropometrics for public use. The dataset
is collected with multiple settings showcasing diverse backgrounds, clothing,
and lighting conditions, comprising 2,142 subjects (1,326 in clinical and 815
in community settings). The clinical setting is captured at a hospital named
All India Institute of Medical Sciences Jodhpur (AIIMS-J), India, and the
community setting is captured in multiple government schools of the district.

– Evaluated DomainAdapt ’s in a comparative analysis against traditional task
weighting methods [3,9], showcasing improved learning outcomes and class
imbalance handling.

2 Methodology

2.1 AnthroVision: Details of Dataset

To address the scarcity of publicly available datasets for automated nutritional
status assessment in children, we introduce a novel dataset, “AnthroVision”.
Let’s denote it D. This dataset is a comprehensive collection of data points i,
each represented by a tuple (Ii, yri, yci), where:

– Ii is the set of multi-angle images for the i-th subject, encompassing both
full-body and facial views.

– yri is the vector of anthropometric measurements for the i-th subject, includ-
ing age, height, weight, Body Mass Index (BMI), Mid-Upper Arm Circumfer-
ence (MUAC), and Head Circumference (HC), serving as regression labels.
Additionally, we have calculated the weight-for-age, height-for-age, and BMI-
for-age z-scores based on the World Health Organization (WHO) [23] and
the Centers for Disease Control and Prevention (CDC) [14] growth standards
which are used for creating classification labels.

– yci is classified into categories such as healthy/unhealthy based on BMIzs-
core, underweight or wasting (inferred from agewise MUAC cutoffs and
weight-for-age < −2 SD), overall category (based on presence of stunting
i.e. height-for-age Z-score (HAZ) < −2SD or underweight or wasting) [24].
Adhering to WHO and CDC standards ensures our dataset’s validity and
alignment with clinical practices in nutritional status assessment.

“AnthroVision”, the proposed dataset is illustrated in Fig. 2 with settings
showcasing diverse backgrounds, clothing, and lighting conditions, comprises
2,142 subjects (1,326 in clinical and 815 in community settings). The clinical
setting is captured at a hospital named All India Institute of Medical Sciences
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Fig. 2: AnthroVision Dataset: (a) Clinical Setting (Hospital - AIIMS Jodhpur, In-
dia)(b) Community Setting: nearby government schools in Jodhpur, Rajasthan,
India district.

Jodhpur (AIIMS-J), India, and the community setting is captured in multiple
government schools of the district. It is divided into 1284 training, 429 validation,
and 428 test samples following a 60-20-20 split, with each subject contributing
approximately eight multi-pose images. AnthroVision’s development involved
utilizing standardized equipment and protocols in collaboration with government
institutions, hospitals, and schools, with institutional ethical clearance from both
our institute and the institute of data collection (wherever applicable). Further
methodological details are provided in the supplementary materials.

2.2 DomainAdapt : Domain Guided Task Weighing Technique

In this section, the working of the proposed training technique, DomainAdapt,
is explained. It is to be noted that when dealing with multitask learning, the
interplay between tasks plays a pivotal role in model performance. Recognizing
this, we introduce a novel learning technique, DomainAdapt, that incorpo-
rates domain-guided task weighting to adjust the importance of each task during
training dynamically. This method leverages predefined domain knowledge and
data-derived insights in the form of MI between predicted outcomes to optimize
task-relatedness and performance.

Core Idea: When multiple poses of the user are taken via images, the im-
ages are used to predict the anthropometric values, which will be referred to as
follows: Age (months) as T1, BMI as T2, Height(cm) as T3, Weight(kg) as T4,
MUAC(cm) as T5, HC(cm) as T6. Further, image-based classification is done for
health status based on nutritional indices BMIzscore-based Healthy/Unhealthy
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Fig. 3: Overview of the DomainAdapt Model with Regression and Classification
pathways. Pose images are processed by VGG19 and ResNet18 feature extractors
in two parallel pathways. The outputs from both pathways compute the mutual
information (MI) matrix. A predefined binary matrix M and the MI matrix are
combined using learnable parameters α and β, forming a dynamic weight matrix
M̃ = αM + βMI which weighs multitask losses

classification as T7, Underweight/Wasting (Based on agewise MUAC) classifica-
tion as T8, and Overall (based on presence of Stunting/Underweight/Wasting)
classification as T9 (0: healthy, 1: unhealthy).

DomainAdapt based Model: We introduce a dual-branched multitask
framework, as shown in Figure 3, that employs VGG-19 for predicting anthro-
pometric measurements (Tasks T1-6) and ResNet-18 for classifying health sta-
tus label (Tasks T7-9) (labels calculated based on nutritional indices). The ar-
chitecture comprises two parallel feature extraction backbones: VGG19 and
ResNet18. We further perform the pose wise feature fusion for the task out-
puts of each pose and use this fused vector in the subsequent linear prediction
layers. Mutual Information Calculation and Dynamic Weighting: To
implement dynamic loss weighting, we utilize a binary matrix M of size 9 × 9,
predefined based on domain knowledge, to represent task relationships. A value
of ‘1‘ indicates related tasks, while ‘0‘ indicates unrelated tasks. For instance,
in the context of BMI, relationships are established based on its dependency
on Height and Weight. Thus, the matrix M is initialized with a value of ‘1‘ for
Height and Weight and ‘0‘ for other metrics. This matrix serves as the foundation
for dynamic weight adjustments during training, leveraging Mutual Information
(MI) for optimization.

The mutual information matrix MI of size 9×9 is calculated for all task pairs.
First, regression outputs are discretized into bins. Let y ∈ Rn be the continuous
regression outputs, and let B be the number of bins. The discretization function
D maps the continuous outputs to discrete values:

ydisc = D(y, B) (1)

where ydisc ∈ {1, 2, . . . , B}n, and D is defined as:

D(y, B) =

⌊
y −min(y)

max(y)−min(y)
×B

⌋
(2)



6 M. Khan et al.

The classification outputs, which were originally probabilities, are then converted
to binary values. Furthermore, the mutual information between tasks i and j is
calculated as:

MI(i, j) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where X and Y are the sets of discrete values of the outputs for tasks i and j,
respectively, p(x, y) is the joint probability distribution, and p(x) and p(y) are
the marginal probability distributions.
Learnable Parameters α and β: These parameters are learned during the
training process to optimize the performance of the model. (i) α: This param-
eter scales the contribution of the predefined binary matrix M . It reflects the
initial assumptions and domain knowledge about the task relationships. (ii) β:
This parameter scales the contribution of the mutual information matrix MI. It
reflects the data-driven relationships discovered during training.

The dynamic weight matrix M̃ is calculated using these learnable parameters,
and to ensure stable weight updates, M̃ is normalized:

M̃ = αM + βMI and M̃norm =
M̃∑

i,j M̃(i, j)
(4)

Task-Specific Loss Calculation: Task-specific losses, organized in a 9 × 1
vector, utilize Mean Squared Error (MSE) for regression tasks and Binary Cross-
Entropy (BCE) for classification tasks. These losses are weighted by M̃norm. The
total loss for multitask learning is then calculated as:

Total Loss =
1

N

N∑
i=1

M̃norm,i · Lossi (5)

where Lossi denotes the individual loss for task i, and N is the total number of
tasks.

3 Experiments and Results

Key hyperparameters include a batch size of 128 for training, 64 for validation,
and 64 for testing, with an initial learning rate of 1e-3 using the Adam optimizer.
Data augmentation techniques include color jitter, and random grayscale, which
will not impact the shape of the human body. The model is trained on a single
Tesla V100 GPU with CUDA 12.0. A 4-fold stratified cross-validation is applied.

Performance Evaluation. A comprehensive performance evaluation of the
suggested training methodology for the said problem statement of predicting an-
thropometric measurements and nutritional labels is shown in Table 1. We have
used Precision, Recall and F1 score to demonstrate the classification efficiency
of the comparisons and Root Mean Square Error(RMSE) for assessing regression
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Table 1: Performance Evaluation of DomainAdapt Model and Comparisons with
Baseline Methods: Tasks T1-T6 are regression tasks representing Age (months),
BMI, Height (cm), Weight (kg), MUAC (cm), and HC (cm), respectively. Tasks
T7-T9 are classification tasks: T7 is BMIzscore-based Healthy/Unhealthy clas-
sification, T8 is Underweight/Wasting classification, and T9 is Overall classifi-
cation based on stunting, underweight, and wasting. Precision, recall, and F1
score are used for classification tasks, while RMSE is used for regression tasks.
A. DomainAdapt performance comparison with other task weighing techniques for classification (Precision ↑, Recall ↑, F1 ↑) tasks

Model T7 T8 T9
Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

DomainAdapt 0.51 ± 0.02 0.62 ± 0.01 0.54 ± 0.02 0.62 ± 0.05 0.69 ± 0.10 0.64 ± 0.14 0.63 ± 0.01 0.67 ± 0.04 0.64 ± 0.03
Static 0.59 ± 0.11 0.62 ± 0.07 0.60 ± 0.15 0.67 ± 0.08 0.72 ± 0.03 0.67 ± 0.11 0.62 ± 0.20 0.62 ± 0.14 0.62 ± 0.21
Uncertainty 0.54 ± 0.03 0.67 ± 0.02 0.56 ± 0.04 0.54 ± 0.05 0.73 ± 0.04 0.62 ± 0.05 0.49 ± 0.04 0.70 ± 0.03 0.58 ± 0.02
GradNorm 0.58 ± 0.03 0.54 ± 0.02 0.55 ± 0.03 0.53 ± 0.04 0.72 ± 0.03 0.61 ± 0.04 0.60 ± 0.03 0.61 ± 0.02 0.61 ± 0.03

B. Cross validation of model across clinical and community settings for classification (Precision ↑, Recall ↑, F1 ↑) tasks
Clinical 0.41 ± 0.02 0.64 ± 0.01 0.50 ± 0.03 0.56 ± 0.04 0.62 ± 0.05 0.58 ± 0.02 0.54 ± 0.03 0.58 ± 0.01 0.55 ± 0.02
Community 0.70 ± 0.03 0.75 ± 0.02 0.70 ± 0.04 0.83 ± 0.05 0.85 ± 0.02 0.83 ± 0.03 0.77 ± 0.04 0.80 ± 0.03 0.77 ± 0.02

C. Model performance comparison with other task weighing techniques for regression (RMSE↓) tasks
Model RMSE T1 ↓ RMSE T2 ↓ RMSE T3 ↓ RMSE T4 ↓ RMSE T5 ↓ RMSE T6 ↓
DomainAdapt 43.76 ± 1.07 2.96 ± 0.14 22.02 ± 0.66 12.44 ± 0.22 3.55 ± 0.24 5.05 ± 1.07
Static 44.02 ± 1.12 3.47 ± 0.21 28.87 ± 0.66 12.31 ± 0.34 4.32 ± 0.11 9.42 ± 1.25
Uncertainty 45.00 ± 1.23 3.86 ± 0.27 30.48 ± 1.02 12.74 ± 0.52 4.08 ± 0.25 10.36 ± 0.67
GradNorm 52.00 ± 1.34 4.58 ± 0.35 23.47 ± 1.12 27.06 ± 0.74 4.07 ± 0.31 28.51 ± 0.84

D. Cross validation of model across clinical and community settings for regression (RMSE↓) tasks
Clinical 45.02 ± 1.23 4.41 ± 0.31 29.55 ± 1.02 12.30 ± 0.52 5.25 ± 0.25 13.46 ± 0.67
Community 46.96 ± 1.34 5.47 ± 0.37 36.42 ± 1.56 17.20 ± 1.72 6.94 ± 1.31 15.23 ± 0.84

Table 1 A and C showcase DomainAdapt based model performance compared
to other baseline MTL training techniques such as Static, Uncertainty and Gra-
dient Normalisation (GradNorm). DomainAdapt has shown somewhat at par
performance at classification for Task 1 and 2 while showed superior classifica-
tion for Task3. However, the important observation here lies in the regression
performance where DomainAdapt has shown the best performance which under-
scores our hypothesis that DomainAdapt has the capability to improve overall
multitask performance by balancing out related tasks and improving them holis-
tically. Table 1 B and D shows the cross validation of the model’s performance
across clinical and community settings in contrast to a model that is trained
on both the datasets combined. Interestingly, the model trained on Community
setting has shown much superior performance in comparison to the other two
while in case of regression, the model trained on a diverse dataset shows the
least RMSE. This might indicate on the role of the kind of lighting, capturing
environment and clothing on the result outcomes. Most subjects in a community
setting are wearing a uniform as we have collected those datasets from various
schools in the district and have varied backgrounds pertaining to the locations.
The images collected in clinical environment are diverse in terms of clothing with
consistency in the image background. Further ablation analysis of the impact of
removing particular poses on model performance is explored in the supplemen-
tary material.
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Fig. 4: Comparison of Alpha and Beta Gradients with Train and Validation Loss.
(1) Alpha Gradient Over Epochs shows the gradient variation of α during
training impacting M matrix. (2) Beta Gradient Over Epochs illustrates
the gradient changes of β impacting MI matrix. (3) Training and Validation
Loss vs. Epoch Plot compares training and validation loss over epochs to
assess model performance and generalization.

3.1 Analysis of DomainAdapt

Plots of gradients for parameters α and β in Fig 4 show diverging trends, sug-
gesting a shift from relying on the initial task importance matrix M to valuing
the mutual information matrix MI more. This is confirmed by training and val-
idation loss curves, where α’s stabilization and β’s increase hint at improved
model generalization through a better balance of tasks and enhanced focus on
dynamic task relationships.The range of α value is between 0.8-1 while for β
it is 0.4-1. We examine our DomainAdapt framework by visualizing the task
weight matrices from the multitask learning process in 3D graphs (in Fig. 5),
showcasing weight distribution for nine tasks. Each graph’s z-axis shows weight
magnitude, with the x and y-axes detailing task-specific ’bins/attributes,’ re-
vealing the algorithm-driven variability in task importance.

The visualizations reveal a varied weight distribution across tasks, indicating
the model’s adaptive approach to prioritizing different tasks based on data. Pat-
terns of unique weighting per task suggest tailored contributions to the learning
goal. Notably, areas with high peaks could risk overfitting, while low-weight re-
gions might underfit. This demonstrates the DomainAdapt framework’s ability
to dynamically balance task focus, promoting a well-rounded learning state that
enhances generalization.

4 Conclusion

Our study advances and establishes state-of-the-art for the field of computer-
assisted interventions for automating malnutrition screening in children to ad-
dress global health inequities. Through the DomainAdapt multitask learning
framework, we blended domain knowledge with computer vision and created a
set of a unique, large-scale dataset. This highlights our commitment to devel-
oping accessible medical health solutions, particularly for vulnerable and under-
represented populations in remote areas where conventional screening techniques
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Fig. 5: Adaptive Weight Distributions Across Multitask Learning Objectives.
Each plot (Task 1 to Task 9) illustrates how the weight distribution changes
dynamically during the training process, reflecting the model’s adaptation to
varying task difficulties and interdependencies. X-axis: training epochs, Y-axis:
task indices, and Z-axis: weight values.

are not very scalable due to involved costs of training healthworkers or the time
taken in spanning a large geographical area. This research also paves the way
for future innovations in point-of-care and teleradiology applications for complex
problem statements without prior literature, promising a significant impact on
public health strategies worldwide.
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