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Abstract. Foundation Vision-Language Models (VLMs) trained using
large-scale open-domain images and text pairs have recently been adapted
to develop Vision-Language Segmentation Models (VLSMs) that allow
providing text prompts during inference to guide image segmentation. If
robust and powerful VLSMs can be built for medical images, it could
aid medical professionals in many clinical tasks where they must spend
substantial time delineating the target structure of interest. VLSMs for
medical images resort to fine-tuning base VLM or VLSM pretrained on
open-domain natural image datasets due to fewer annotated medical image
datasets; this fine-tuning is resource-consuming and expensive as it usually
requires updating all or a significant fraction of the pretrained parameters.
Recently, lightweight blocks called adapters have been proposed in VLMs
that keep the pretrained model frozen and only train adapters during
fine-tuning, substantially reducing the computing resources required. We
introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained
vision-language segmentation models using transformer encoders. Our
experiments in widely used CLIP-based segmentation models show that
with only 3 million trainable parameters, the VLSM-Adapter outperforms
state-of-the-art and is comparable to the upper bound end-to-end fine-
tuning. The source code is available at: https://github.com/naamiinepal/
vlsm-adapter.

Keywords: Vision-Language Segmentation · Transfer Learning · Param-
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1 Introduction

The early 2010s saw the initial success of Deep Learning in single-domain tasks
such as image classification or language translation when deep neural networks
could learn powerful representation using large-scale images [4,9] or texts [6].
As openly available large-scale annotated data lacked medical images, transfer
learning was widely used where networks are initialized using weights obtained
from pretraining in natural images such as ImageNet [4] and are further fine-tuned
in domain-specific smaller datasets [28]. Recently introduced foundation Vision-
Language Models (VLMs) can learn powerful joint representation from large-scale
images-text pairs and can be adapted to a wide range of tasks, including dense
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prediction tasks to develop Vision-Language Segmentation Models (VLSMs),
which allow providing text prompts during inference to guide image segmentation.
VLSMs are attractive in the medical domain because robust and powerful VLSMs
could aid medical professionals in many clinical tasks requiring tedious and
time-consuming delineation of the target structure of interest.

VLSMs have separate vision and language encoders or joint vision-language
encoders followed by a decoder or a mask-generating network that is trained
end-to-end (E2E) [26], or separately using frozen encoder parameters obtained
from VLM pretraining [18]. The most popular VLM, widely adapted to create
different VLSMs, is Contrastive Language-Image Pretraining (CLIP) [21], which
uses separate vision and language encoders. It learns joint vision-language repre-
sentation by projecting images and texts into a shared embedding space through
learnable parameters that bring semantically similar image-text pairs close while
pushing dissimilar pairs further apart. Various VLSMs [18,26,27] have leveraged
this multimodal semantic information captured by CLIP to train a segmentation
model for an open-vocabulary segmentation task. Yu et al. [29] used a pretrained
self-supervised mask proposal network and CLIP to realize the zero-shot referring
image segmentation on the open domain without additional training.

Although open-domain VLMs show impressive zero-shot or few-shot perfor-
mances in downstream tasks, adapting them to medical image segmentation
requires further fine-tuning [1,20]. This fine-tuning usually requires updating
all [11] or a significant fraction (usually last layers) of the pretrained param-
eters [16], which is expensive because VLMs are much larger than popular
image-only models (a few to several hundred million parameters). Different meth-
ods have been proposed to efficiently fine-tune these foundation models, often
called Parameter Efficient Fine-Tuning (PEFT) techniques. The two most popular
PEFT techniques are LoRA [12] and Adapters [10] — both of them adjust the
intermediate representations of the pretrained models often using lightweight net-
works parallel to the pretrained ones with only slight differences. Since adapters
have been explored more in vision-language settings [7,23] compared to LoRA,
we focus on adapters as a method for PEFT VLSMs for the scope of this paper.

Adapters are small networks with much fewer parameters that can be plugged
into existing pretrained architectures, and then only adapters are trained while
keeping pretrained weights frozen during fine-tuning. VL-Adapter [24] reused
the pretrained VLMs for vision-text tasks like image captioning and visual
questioning-answering. Although a few methods have been proposed for VLM-
based classification tasks, no adapters are studied for E2E-trained VLSMs for
further fine-tuning. Side-Adapter Network (SAN) [27] introduced ViT [5] as an
adapter network, parallel to the CLIP’s encoders, that generates segmentation
masks for image-text inputs. This paper proposes learnable adapter networks to
fine-tune already trained VLSMs, as VLSM-Adapter, which adapts the interme-
diate learned representations for domain-specific datasets while preserving the
already learned weights from large-scale pretraining. We add learnable adapter
modules to a variant of VLSM, CLIPSeg [18], introducing 3 million trainable
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parameters, which perform on par with the same model’s E2E fine-tuning despite
having almost 50 times fewer trainable parameters.

The main contributions of this paper are:

– We introduce novel adapter modules to efficiently fine-tune pretrained VLSMs
to domain-specific smaller datasets using only a few learnable parameters.

– Our experiments and results on medical datasets with diverse modalities
indicate that fine-tuning only the adapter modules for small datasets is better
than E2E fine-tuning for VLSMs.

– We provide an ablation study on the positioning of adapter modules and
show that introducing adapters deeper into the intermediate representations
of the pretrained models results in better performance.

2 Adapters for CLIP-based VLSMs

2.1 Problem Statement

An encoder-decoder architecture-based pretrained model for vision-language
segmentation model is frozen, while adapter modules with a much smaller number
of parameters compared to the original frozen network are introduced to fine-
tuning in a smaller training set comprising of the triplets: D = {(vi, li,mi)}Si=1.
Here, S is the number of training samples, vi, li, and mi represent the image
input, text prompt, and target mask of the ith data point, respectively. The input
images are RGB images and targets are their corresponding binary masks, i.e.,
vi ∈ RH×W×3, and mi ∈ {0, 1}H×W , respectively.

2.2 Adapter Formulation

Adapter modules [10] are the non-linear projection blocks that adapt the repre-
sentations of the pretrained models to a downstream task without changing their
parameters, enabling the representations learned by the pretrained models to be
used for other tasks. Eq. (1) represents the basic block of an adapter network.

f ′ = Adapter(f) = f + σ(ψ(f ·W1) ·W2) (1)

Here, f is the representation learned by the pretrained model, f ′ is the
adapted features, and W1 and W2 are learnable adapter weights. ψ and σ are
non-linear activation functions, which, in most cases, are the same type. The
adapter weights are initialized as W1 ∈ Rd×d′

, W2 ∈ Rd′×d, where d′ ≤ d. The
size of the input tensor must not change while exiting the adapters because they
have to be used by the subsequent pretrained layers, i.e., {f, f ′} ∈ R...×d.

2.3 Proposed VLSM-Adapter

As displayed in Fig. 1, we introduce adapters to the encoder segments while keep-
ing the decoder static to VLSM-Adapter. The positional variation to introduce
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Fig. 1. Overall architecture of the proposed VLSM-Adapter module. MSAl,
MLPl, and Al∗ stand for multi-head self-attention block, multi-layer perceptron, and
adapter layers, respectively, for the lth transformer layer. (a) Adapters are connected
to each transformer block in the text and image encoders. (b) The shallow adapter
adds learnable layers to each transformer block output. (c) The dense adapter employs
the learnable layers before each residual addition in each transformer block. (d,e,f)
Adapters have been configured with different positioning for text and image encoders.

transformer block adapters provides three incremental VLSM-Adapter variants.
(1) V-Adapter has adapters in the image encoder layers. (2) VL-Adapter
adds adapters for text encoder layers. (3) VLC-Adapter adds an extra layer
to adapt text conditioning at the bottleneck layer. Since CLIPSeg [18] provides
transformer encoders and a pretrained segmentation mask decoder, we have used
it as a candidate model for our experiments to validate VLSM-Adapter. Two
variants of VLSM-Adapter in CLIPSeg networks have been implemented for
fine-tuning: CLIPSeg Shallow Adapter (SA) and CLIPSeg Dense Adapter (DA).

CLIPSeg Shallow Adapter The shallow adapter (SA) in CLIPSeg [18] learns to
project the pretrained encoder representations before feeding them to the decoder
network (Fig. 1b). The adapters are introduced at the skip connections of the
CLIPSeg’s encoders used by the vision-language decoder to predict segmentation
masks. Since the original CLIPSeg model [18] used skip connections from Lt ∈
{3, 6, 9} transformer [25] layers in the image encoder, three adapter layers are
introduced at these connections. A similar strategy adds a skip connection with
adapter modules for Lt layers in the text encoder. CLIPSeg SA introduces
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d′ = 512 as the hidden dimension of the adapter block, resulting in 4.2 million
trainable parameters.

CLIPSeg Dense Adapter The dense adapter (DA) in CLIPSeg learns to adjust
the representation of the successive layers of the encoders before feeding to the
decoder network (Fig. 1c). Following Houlsby et al. [10], we apply adapters before
the two residual connections in each attention layer; two adapter blocks are used in
each self-attention layer. We use adapter block up to max(Lt) = LT = 9 attention
layers of the image encoder because, beyond the LT layer, the intermediate
representations remain unused by the decoder. Similarly, DA implements the
same pattern of adapters for the text encoder. DA also uses an adapter in
CLIPSeg’s text conditioning embeddings [18] to ensure consistency with SA.
The hidden dimension of the block is d′ = 64, which introduces only 3 million
trainable parameters. The empirical results of Table 1 exhibit that DA surpasses
SA in performance despite having fewer parameters.

The principal difference between SA and DA is that DA adapts the activations
of each encoder block before feeding to the next one. In contrast, SA adapts the
extracted internal activations fed to the decoder.

3 Experiments

3.1 Datasets

Recently, Poudel et al. [20] proposed a wide range of automatic prompt generation
methods and benchmark fine-tuning of different CLIP-based VLSMs in eight
medical imaging datasets from diverse modalities, including five non-radiology
and three radiology datasets. Following the convention of that work, we use their
text prompts and the same splits of datasets. Their proposed method generated
multiple text prompts for an image-mask pair; for our empirical analysis, we
randomly sample a text prompt among many to generate an image-mask-text
triplet while iterating through the datasets.

Among the non-radiology datasets, three of them are endoscopic images with
the polyp segmentation task (Kvasir-SEG [13], ClinicDB [3], and BKAI [19]), one
with diabetic foot ulcer segmentation task (DFU [14]), and the last one has for
skin-lesion segmentation (ISIC-16 [8]). Three different radiology images include
segmentation of breast ultrasound (BUSI [2]), 2D-echocardiography (CAMUS
[15]), and chest X-ray (CheXlocalize [22]).

3.2 Baseline Methods

We benchmark five models for our experimental analysis — two (CLIPSeg [18]
and CRIS [26]) are trained with E2E fine-tuning, and three (SAN [27], CLIPSeg
SA, and CLIPSeg DA) with adapter fine-tuning. SAN can generate segmentation
masks from image-text inputs by training a ViT block [5] along frozen CLIP [21].
We are the first to use adapters for the pretrained encoder-decoder model for
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vision-language segmentation tasks, such as CLIPSeg DA and CLIPSeg SA.
Since the adapter module proposed by Houlsby et al. [10] is incompatible with
convolutional encoders, they are not practiced with the CRIS [26]. We use dice-
score (DSC (%)), intersection-over-union (IoU (%)), and Hausdorff distance at
the 95th percentile (HD95) as metrics — all averaged over a dataset — to evaluate
the overall performance of the methods.

3.3 Implementation Details

The training and inference of the baseline and proposed methods are performed in
an NVIDIA RTX 3090. We use floating-point-16 mixed-precision training with a
batch size of 32. The initial learning rates for the DA and SA are 1e−3 and 3e−4,
respectively, with a scheduler that scales them by a factor of 0.3 if no decrease
in validation loss is observed for 5 consecutive epochs. If no progress in the
validation DSC (%) is observed for the 20 consecutive epochs, then the training
is stopped; thus, there is no fixed number of training epochs. The models are
optimized with AdamW [17] with a weight decay of 1e− 3. Also, each experiment
is subjected to three different seed values to test the consistencies of the methods
and account for the randomness in sampling the prompts. We combined dice and
binary cross-entropy losses for the objective function, as shown by Eq. (2).

L = λd · LDice + λce · LBCE (2)

Here, λd and λce are hyperparameters; we chose their values for our experi-
ments as λd = 1.5 and λce = 1.

4 Results and Discussions

Variants of VLSM-Adapter. In Fig. 2, we present the results of three different
positioning of adapters in VLSMs as defined in Section 2.3. The results show
that VL-Adapter performs best in most of the datasets — so, we have kept the
performance of only this configuration in Table 1. VLC-Adapter displays the
optimal performance in the ClinicDB [3] dataset. V-Adapter exhibits the best
score for Kvasir-SEG [13], even superior to the upper bound set by CRIS [26]
as indicated in Table 1. Since the adapters are sensitive to their placements in
encoder branches for generalizing domain-specific distribution of the datasets,
one should evaluate different placements of adapters before selecting one variant.
(see ?? in the supplementary section for more metrics)

CLIPSeg Adapter outperforms E2E fine-tuning. With E2E fine-tuning for
all radiology and non-radiology datasets, CLIPSeg-with-adapter shows superior
performance for almost all the metrics compared to its counterpart, with no
adapter module (see Table 1). CLIPSeg with adapter modules, despite having 47
times fewer trainable parameters than in an E2E setting, performing better than
the latter shows the benefit of introducing learnable adapter modules with few
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Fig. 2. Dice Score (%) of variants of VLSM-Adapters across medical image
datasets. The dense adapter is better than the shallow adapter for almost all the
datasets.

trainable parameters in intermediate layers of CLIPSeg, rather than fine-tuning
the whole model for small datasets. Also, their performance is comparable to that
of the state-of-the-art vision-only models for the individual datasets as reported
by Poudel et al. [20].

Parameter-Metric Trade-off. In Table 1, the proposed CLIPSeg DA model
performs better than the SAN [27] model despite having 2.6 times fewer learnable
parameters. In the E2E fine-tuning cases, the CRIS [26] model has performed
better than CLIPSeg [18] in almost all the datasets. The performance of CLIPSeg
DA is on par with the CRIS model, even better in the ISIC-16 [8] dataset,
regardless of having 46 times fewer parameters than CRIS. Also, this drop
in metrics may not be significant in some scenarios with a high computation
constraint, which is precisely where our proposed adapter models shine.

SA vs. DA. The DA network performs better than the SA network for most
datasets, except for ClinicDB [3] and BUSI [2]; even in those two datasets, the
metrics of the DA network are on par with that of SA, as in Table 1 and Fig. 3.
Since there are more adapter layers in DA, we suspect the layers can adjust
the internal representations of the pretrained models more finely compared to
SA. Also, although the SA network has a broader adapter dimension of 512, it
cannot outperform the DA network, which has only a 64 adapter dimension.
This signifies that deeper adapter networks can capture complex representations
despite having smaller projection dimensions.
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Table 1. Evaluation of models across diverse medical image datasets. ∗M
represents the number of trainable parameters in millions. Bold shows the best score
among adapter fine-tuned models. Gray depicts the performance from E2E fine-tuning.

Datasets Metrics
Upper Bound Adapter Fine-tune

CLIPSeg CRIS SAN CLIPSeg SA (Ours) CLIPSeg DA (Ours)
150M 147M 8.4M 4.2M 3M

Kvasir-SEG
DSC (%) ↑ 87.69 89.43 69.58 86.85 89.10
IoU (%) ↑ 81.72 83.37 58.05 79.26 82.39

HD95 ↓ 54.02 55.23 130.75 52.18 47.79

BKAI
DSC (%) ↑ 85.59 92.62 66.26 83.67 87.23
IoU (%) ↑ 77.52 88.30 54.58 75.02 79.81

HD95 ↓ 87.91 49.80 224.37 87.79 70.02

ClinicDB
DSC (%) ↑ 88.58 93.63 81.36 89.04 88.73
IoU (%) ↑ 81.51 88.74 72.61 81.93 81.84

HD95 ↓ 19.30 12.36 38.42 18.03 18.76

ISIC-16
DSC (%) ↑ 91.88 91.49 90.39 91.40 92.05
IoU (%) ↑ 85.76 85.41 83.61 85.05 85.98

HD95 ↓ 60.93 64.39 87.25 60.29 54.38

DFU
DSC (%) ↑ 72.12 74.01 63.38 69.47 72.14
IoU (%) ↑ 61.61 64.31 51.63 58.27 61.42

HD95 ↓ 38.24 41.92 60.10 38.75 38.79

CAMUS
DSC (%) ↑ 88.93 91.29 46.42 87.16 89.71
IoU (%) ↑ 80.69 84.42 31.81 78.01 81.85

HD95 ↓ 16.69 12.33 175.81 19.14 14.16

BUSI
DSC (%) ↑ 62.91 67.50 45.61 65.51 65.02
IoU (%) ↑ 55.52 60.90 35.27 58.19 57.20

HD95 ↓ 72.98 50.63 152.10 63.36 64.37

CheXlocalize
DSC (%) ↑ 58.51 60.76 44.37 58.14 58.99
IoU (%) ↑ 45.45 47.99 31.97 44.84 46.01

HD95 ↓ 537.57 519.21 724.55 533.04 535.97

5 Conclusion and Future Direction

We present a VLSM-Adapter module that adjusts to the downstream segmenta-
tion tasks without changing the parameters of the pretrained encoder-decoder
architecture. We show that updating only the adapter parameters achieves on
par performance to E2E fine-tuning, and is even better than the latter for some
datasets. The dense adapter variant performing better in most cases than the
shallow adapter one, despite having fewer parameters, shows that tweaking the
internal representations of the pretrained models finely in smaller dimensions
— dense adapter — is more crucial than coarsely adapting the representations
in a higher dimensional space — shallow adapter. Also, one should be open to
experimenting with positioning the adapters in vision or text encoder branches.

In this work, we have only used a VLSM adapter for semantic segmentation in
the medical domain. The performance of adapter modules on other segmentation
tasks for different domains is yet to be explored. Additionally, this paper does
not benchmark the performance of the models with adapters in the language-only
branch because of the higher influence of the image encoder in the decoder of
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Fig. 3. Evaluation of Adapter-finetuned models. Our methods perform better
than SAN, with Dense Adapter (DA) performing the best across diverse datasets.

CLIPSeg; the decoder has skip connections from intermediate representations
of the image encoder. Future works can study the performance of models with
adapters in the language encoder comparing it with the ones we demonstrated.

VLSM-Adapter also opens the pathways to continual learning and multi-task
learning machines for VLSMs as specialized adapters could be trained for new
data or tasks while keeping the core architecture frozen to prevent forgetting.
These adapters allow efficient fine-tuning of large pretrained VLSMs for medical
image segmentation where there are often datasets with small sizes.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
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