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Abstract. Earlier diagnosis of Leukemia can save thousands of lives
annually. The prognosis of leukemia is challenging without the morpho-
logical information of White Blood Cells (WBC) and relies on the ac-
cessibility of expensive microscopes and the availability of hematologists
to analyze Peripheral Blood Samples (PBS). Deep Learning based meth-
ods can be employed to assist hematologists. However, these algorithms
require a large amount of labeled data, which is not readily available.
To overcome this limitation, we have acquired a realistic, generalized,
and large dataset. To collect this comprehensive dataset for real-world
applications, two microscopes from two different cost spectrum’s (high-
cost: HCM and low-cost: LCM) are used for dataset capturing at three
magnifications (100x, 40x,10x) through different sensors (high-end cam-
era for HCM, middle-level camera for LCM and mobile-phone’s camera
for both). The high-sensor camera is 47 times more expensive than the
middle-level camera and HCM is 17 times more expensive than LCM. In
this collection, using HCM at high resolution (100x), experienced hema-
tologists annotated 10.3k WBC of 14 types including artifacts, having
55k morphological labels (Cell Size, Nuclear Chromatin, Nuclear Shape,
etc) from 2.4k images of several PBS leukemia patients. Later on, these
annotations are transferred to other two magnifications of HCM, and
three magnifications of LCM, and on each camera captured images.
Along with this proposed LeukemiaAttri dataset, we provide baselines
over multiple object detectors and Unsupervised Domain Adaptation
(UDA) strategies, along with morphological information-based attribute
prediction. The dataset is available at: https://tinyurl.com/586vaw3j

Keywords: Domain Adaptation · Leukemia · Morphological Attributes
· Object Detection.

1 Introduction

According to GLOBOCAN 2020, Leukemia is a leading cause of cancer-related
deaths in individuals under 39 years, especially children. It constitutes 2.5% of to-
tal cancer incidences with an annual estimate of 474,519 cases, leukemia is a rare
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Fig. 1: a) Illustrate the image-capturing procedure using general mobile cameras
(C1) and high-end cameras for HCM, and middle-level cameras for LCM (C2) at
multiple resolutions. Images are captured using both high and low-cost micro-
scopes. b) shows our microscope set up with cameras (C1, C2) to capture slide
images and cameras (C3, C4) to capture the stage-scales. c) Shows the different
types of WBCs with morphological attributes.

yet highly malignant disease [4]. Leukemia, a form of hematologic malignancy,
presents a frightening challenge in modern medicine due to its diverse subtypes,
complex etiologies, and varying disease progressions [6]. Initiated through ge-
netic mutations in the bone marrow cells, disrupting the normal development
and count of various blood cells, leading to uncontrolled growth of abnormal
malignant WBC [27]. Conventional methods for diagnosing leukemia often in-
volve specialized laboratory tests, demanding extensive sample preparation and
expensive medical equipment [21]. Particularly in remote regions of developing
countries, the management of leukemia faces challenges due to the scarcity of
costly laboratory equipment and, notably, a shortage of trained technicians and
specialized doctors [19]. Precise and fast diagnosis is necessary for timely ini-
tiation of appropriate treatment, extremely influencing the survival of patients
[2]. However, the limited availability of expensive medical equipment makes it
necessary to enable low-cost equipment for diagnostic purposes [12]. In clinical
practices, the microscopic examination of Peripheral Blood Film (PBF) is a very
first step for the leukemia diagnosis. The choice of microscope and its resolution,
along with the training of the medical practitioners, affects the accuracy of such
diagnosis. For example, identifying the WBC’s type is feasible at a 40x resolution
but becomes challenging at 10x. However, for detailed analysis of cell morphol-
ogy to ensure an accurate prognosis for leukemia, a high-quality microscope and
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higher resolution of about 100x is preferred. Thus, the PBF analysis for the
prognosis of leukemia is a knowledge-intensive and expensive process, necessi-
tating the use of costly microscopes and trained experts. Similarly, cost-effective
diagnostic modalities often lacking in low-resource areas [13]. The limitation
of these factors collectively restricts accessibility to early and accurate leukemia
prognoses, particularly in remote and resource-constrained areas. To address the
aforementioned factors, subjectivity, and the shortage of hematologists, Artifi-
cial Intelligence (AI), especially deep learning-based methods has been recently
proposed, along with datasets. However, it is crucial to acknowledge that previ-
ously published datasets [20, 10, 17, 7, 15, 1, 9, 3] lack in various aspects: some are
limited by several samples, others do not attend to the problem of localization
of the WBC, many do not have information about the morphological attributes
and most are only captured using one sensor or microscope, etc. All of these limit
the development of a solution that could be applied in real-world scenarios. To
tackle the above-mentioned challenges and assist hematologists with an explain-
able second opinion on the prognosis of leukemia, a large-scale, multi-domain
image dataset enriched with morphological information, named LeukemiaAttri,
has been collected. LeukemiaAttri dataset consists of 28.9K (2.4K × 2× 3× 2)
images captured using low-cost and high-cost microscopes at three different res-
olutions (10x, 40x, 100x ) and different cameras. In addition to the location
annotation of each WBC, we provide detailed morphological attributes for each
WBC. The attributes include WBC size, nuclear chromatin, nuclear shape, nu-
cleolus, cytoplasm, cytoplasmic basophilia, and cytoplasmic vacuoles. These at-
tributes were selected after detailed conversations with multiple hematologists.
The procedure of dataset collection is illustrated in Fig. 1.

In existing CAD systems, many WBC detectors have been employed, lever-
aging methods Faster-RCNN, YOLOv5, and other object detectors [23, 24, 28,
26]. Although, these object detectors offer satisfactory solutions for WBC de-
tection but lack explainability which is vital for the leukemia’s prognosis. To
overcome this limitation, we provide a multi-head object detector approach,
namely AttriDet, that not only detects the WBC types but also predicts their
morphological attributes employing low-level and high-level deep features. We
are hopeful that our work will assist the hematologists in providing a more
confident prognosis. In addition, we have provided several competitive baseline
results of state-of-the-art object detection and UDA methods. In summary: (1)
A large-scale multi-domain WBC detection benchmark along with morphologi-
cal attributes of WBCs for prognosis of leukemia is introduced3, (2) To facilitate
future research, we have constructed extensive WBC’s detection and UDA base-
lines, (3) A multi-headed WBC detection and morphological attribute prediction
architectures are introduced.

3 morphological attributes, recommended by hematologists for prognosis of leukemia
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2 Dataset

Popular datasets cover four types of leukemia including Acute Lymphocytic
Leukemia (ALL), Chronic Lymphocytic Leukemia (CLL), Acute Myeloid Leukemia
(AML), and Chronic Myeloid Leukemia (CML). These types mainly fall into
two lineages namely myeloid (AML and CML) and lymphoid (ALL and CLL).
Specific characteristics include increased CML myeloblasts, atypical CLL lym-
phocytes, elevated AML myeloblasts, and ALL lymphoblasts. As shown in Table
1, most existing WBC datasets were collected using a single microscope, with-
out localization and morphological information, and contained either healthy
individuals or patients of only a single type of leukemia.

Table 1: Comparison of the proposed dataset with existing leukemia datasets.
Across Multi. Cells BBX Multi. No. of WBC Morphology

Dataset Type Micro. in image Res. WBC’s Classes

IDB [20] ALL ✘ ✔ ✔ ✘ 510 (LB) 2 ✘

IDB2 [10] ALL ✘ ✘ ✘ ✘ 260 2 ✘

LISC [17] Multi. ✘ ✘ ✘ ✘ 250 6 ✘

Munich[15] AML ✘ ✘ ✘ ✘ 18,365 15 ✘

Raabin [9] Normal ✘ ✔ ✔ ✘ 17,965 5 ✘

HRLS [3] Multi. ✘ ✔ ✘ ✘ 16,027 9 ✘

WBCAtt [25] Normal ✘ ✘ ✘ ✘ 10,298 5 ✔

Ours 4 Multi. ✔ ✔ ✔ ✔ 88,294 14 ✔

2.1 LeukemiaAttri Dataset

To gain a comprehensive understanding of the Leukemia prognosis and its im-
pact, we discussed with several healthcare professionals from different working
environments and finalized the WBC types and their morphological attributes.

In this dataset collection, the PBFs are collected from the diagnostic lab
and images are captured from the monolayer area. To capture images, we uti-
lize two distinct microscopes – the high-cost (Olympus CX23) and the low-cost
(XSZ-107BN) – in conjunction with two separate cameras, namely the HD1500T
(HCM), ZZCAT 5MP (LCM) and the Honor 9x Lite mobile camera (HCM,
LCM). It is quite challenging to locate the same patch on the PBF when employ-
ing different microscopes and resolutions [22]. To address this inherent challenge,
we initiated the capturing process by setting the field of view (FoV) at 10x, and
40x with an approximate 20% overlap, maintaining a fixed x-axis stage scale. At
100x magnification, we captured the FOV containing WBCs without any over-
lap, ensuring the distinct representation of individual WBCs. This process was
repeated both for HCM and LCM. This way, we have 12 subsets of images.

4 The details LeukemiaAttri is explained in supplementary material section
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Fig. 2: (a): WBC type and (b) Morphological attributes distribution

Morphological attributes: The set of rules for WBC morphology varies de-
pending on the hematologists. To enhance prognostic assistance, hematologists
identified the 14 types of WBC and considered seven key morphological at-
tributes for a well-informed prognosis. To annotate the WBC type and morphol-
ogy attributes, hematologists reviewed all subsets of the captured images. They
then selected a subset containing the best-quality images with detailed structural
information for annotation. This subset was collected at 100x using HD1500T
camera on HCM (H 100x C2). For quality control, two hematologists annotate
each cell with the consultation. The detail of some types of WBC with the mor-
phological information is shown in the Fig 1 section (c), where A) monoblasts, B)
monocytes, and C) myelocytes cells exhibit mostly similar morphological char-
acteristics as they originate from the myeloid lineage. Nevertheless, differences
arise, particularly in the presence of cytoplasmic vacuolation. However, D) lym-
phoblasts belong to a lymphoid lineage that shows morphological dissimilarities
in both lineages. After obtaining detailed WBC and their attributes annotations
from hematologist for HCM at 100x, we transferred the annotations to differ-
ent resolutions and across microscope automatically using homography [11], [5].
Transferred annotations were verified manually and re-annotatation was done for
the missing localization. The detailed count of the source subset of WBC types
and their corresponding attributes are shown in Fig. 2 (please see supplementary
material for details).

3 AttriDet: A WBC detection method with attributes

Although several approaches have been presented recently to detect WBCs [29,
14], there remains a clear lack of explainable WBC detection methods [25].
AttriDet: To achieve explainable WBC detection, we propose to use a multi-
headed WBC detector. We firstly apply recent object detectors from different
domains including one-stage (FCOS [24], YOLOv5[26]), two-stage (Spare-Faster-
RCNN [23]) detectors, and transformer (DINO[28]). We chose these methods be-
cause of their good detection results, efficiency, and low memory consumption.
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Fig. 3: AttriDet: WBC and their corresponding attribute predictions framework

Due to the overall better result of YOLOv5 on our datasets (see Table 2), we
have extended the YOLOv5 for attribute prediction. In YOLOv5 architecture,
we added a lightweight attribute head for the prediction of WBC’s morphology
as shown in Fig. 3. For attribute prediction, we want to capture low-level visual
details, therefore, we fuse features from two initial layers which caries struc-
tural and semantically enriched information. To train the attribute head with
YOLOv5 heads, asymmetric loss [18] is employed. The YOLOv5 method-based
object detections and attribute head not only detect WBCs but also predicts
morphology which gives the explainable reasoning to doctors. These predictions
have been registered in a WBC morphology bank and blood film level descrip-
tions have been generated based on the most frequently appearing WBC type
(recommended by hematologists). An example of a generated text-based descrip-
tion is shown in Fig. 3 (a). We presented AttriDet’s explainability to experienced
hematologists, who appreciated its clarity and recognized its potential as a valu-
able tool for providing second opinions on leukemia prognosis. Furthermore, the
proposed AttriDet not only predicts attributes associated with WBCs but also
increases the YOLOv5 predictability (improved mAP from 26.3 to 28.2 as shown
in Table 2, and 4 on subset H 100x C2)
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4 Experiments

4.1 Object Detection

The LeukemiaAttri dataset contains 14 types of WBC cells with 1 class of ar-
tifacts in the None category. For object detection experiments, we have used four
subsets from the LeukemiaAttri dataset, namely H 100x C1 (Mobile), H 100x C2
(HD1500T), L 100x C1 (Mobile), and L 100x C2 (MZZCAT 5MP). The experi-
mental results are shown in Table 2. The results indicate that on the H 100x C1

Table 2: Object Detection baselines results on LeukemiaAttri dataset
Method Subset mAP50-95 mAP50

Sparse R-CNN [23]

H 100x C1 15.8 29.6
H 100x C2 21.3 36.7
L 100x C1 17.2 32.6
L 100x C2 14.5 25.9

FCOS [24]

H 100x C1 16.4 31.8
H 100x C2 22.5 40.6
L 100x C1 17.5 33.9
L 100x C2 17.7 34.3

DINO[28]

H 100x C1 17.0 33.8
H 100x C2 25.4 43.7
L 100x C1 17.5 34.3
L 100x C2 21.5 38.2

YOLOv5x[26]

H 100x C1 20.9 38.8
H 100x C2 26.3 44.2
L 100x C1 20.7 39.5
L 100x C2 20.1 38.1

subset, YOLOv5x achieved the highest performance with an mAP50-95 of 20.9
and an mAP50 of 38.8. Similarly, on the H 100x C2 subset, YOLOv5x again
delivered the best results, with an mAP50-95 of 26.3 and an mAP50 of 44.2. A
similar pattern can be observed for other subsets as well. We believe this is due
to the YOLOV5 robust feature learning for different sizes of cells in the Leukemi-
aAttri dataset. Given that YOLOv5x demonstrated superior performance across
both the HCM and LCM subsets of microscope and mobile camera data, we ex-
tend this for attribute prediction.

4.2 Unsupervised Domain Adaptation based Object detection

In the LeukemiaAttri dataset, 12 subsets are collected from different domains
via HCM and LCM. These different domain subsets contain challenging domain
shifts as shown in Fig. 1: sec(a), making our dataset a domain adaption bench-
mark. Note that due to the poor image quality of LCM, hematologists are often
reluctant to provide annotations, as the process is tedious and prone to errors.
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Therefore, UDA methods could be used to train object detectors on high-quality
images of precise annotation (HCM) and provide results on LCM. To provide

Table 3: Object Detection based domain adaptations results on H 100x C2 and
L 100x C2 subsets of LeukemiaAttri dataset

Method Train Subset Test Subset mAP50-95 mAP-50

YOLOv5[26] (source only) H 100x C2 L 100x C2 11.0 25.5

DACA [16] H 100x C2 L 100x C2 12.6 30.2

ConfMix [23] H 100x C2 L 100x C2 12.6 33.5

the baselines of UDA, we have experimented with two recent methods; ConfMix
[23] and DACA [16], utilizing the highest resolution (100x) subsets collected via
HCM and LCM. As can be seen in Table 3, YOLOv5x (source only) was trained
on the HCM subset, achieving a 25.5 mAP50 on a comparable subset of the
LCM. Nevertheless, employing UDA methods such as ConfMix and DACA led
to higher mAP50 of 33.5 and 30.2, respectively. The low performance of state-
of-the-art UDA methods highlights the complexity and substantial domain shift
present in our dataset

4.3 Object detection with attribute prediction

Table. 4 demonstrate results of our proposed AttriDet for different attributes
prediction. In addition, we demonstrate the improvedWBC detection of AttriDet
(last column) as compared to standard YOLOv5. We believe that better WBC
results are due to robust feature learning employing attributes head. The results
of CBM [8] and AttriDet show that the proposed AttriDet can predict WBC
types and their associated attributes. However, according to the results of CBM
and AttriDet, the nucleus and cytoplasmic vacuoles are proven to be the most
difficult attributes to detect.

Table 4: Testing set results of AttriDet and SOTA methods on H 100x C2 subset:
WBC Type, Attributes (NC: Nuclear Chromatin, NS: Nuclear shape, N: Nucleus,
C: Cytoplasm CB: Cytoplasmic basophilia CV: Cytoplasmic vacuoles)

Method
NC NS N C CB CV WBC

F1 mAP50-95

CBM [8] 21.9 96.2 41.8 77.2 70.2 3.33 27.6
AttriDet 73.9 95.9 54.3 89.7 83.6 29.1 28.2
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5 Conclusions

In this paper, we have presented a large-scale WBC Leukemia dataset containing
12 subsets by using two different quality microscopes with multiple cameras at
different resolutions (10x, 40x, 100x). The collected dataset contains 14 types
of WBC-level localization with their seven distinct morphological attributes.
Based on morphological information, we have provided an AttriDet method to
detect the WBC type with its morphological attributes. AttriDet’s ability to offer
interpretable detections to doctors will enhance their confidence in using AI as a
secondary diagnostic tool. We believe that the presented dataset and proposed
approach will facilitate future research in explainable, robust, and generalized
Leukemia detection.
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