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Abstract. Currently, unsupervised domain adaptive strategies proposed
to overcome domain shift, are handicapped by the requirement of large
amount of target data. On the other hand medical imaging problems
and datasets are often characterized not only by scarcity of labeled and
unlabeled data but also class imbalance. Few-shot domain adaptive ob-
ject detection (FSDAOD) addresses the challenge of adapting object de-
tectors to target domains with limited labeled data. However, existing
FSDAOD works struggle with randomly selected target domain images
which might not represent the target distribution, resulting in overfitting
and poor generalization. We propose a novel FSDAOD strategy for mi-
croscopic imaging to tackle high-class imbalance and localization errors
due to foreground-background similarity. Our contributions include: a
domain adaptive class balancing strategy for few shot scenario and la-
bel dependent cross domain feature alignment. Specifically, multi-layer
instance-level inter and intra-domain feature alignment is performed by
enhancing similarity between the instances of classes regardless of the do-
main and increasing dissimilarity between instances of different classes.
In order to retain the features necessary for localizing and detecting
minute texture variations in microscopic objects across the domain, the
classification loss was applied at feature-map before the detection head.
Extensive experimental results with competitive baselines indicate the
effectiveness of our proposed approach, achieving state-of-the-art results
on two public microscopic datasets, M5 [12] and Raabin-WBC [10]. Our
method outperformed both datasets, increasing average mAP@50 by 8.3
points and 14.6 points, respectively. The project page is available here. 1

Keywords: Few shot domain adaptive Object Detection · Second key-
word · class-balancing-cut-paste.

1 Introduction

Deep-learning methods have shown substantial success for microscopic analysis
[16,19,9,3,21,18,14], however, they require a lot of expert-annotated data, which
is hard to obtain due to limited expert time and availability. This pose a sig-
nificant limitation when required to train on one domain (source) and tested
1 https://im.itu.edu.pk/few-shot-DAODMI/
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on other (target), due to domain shift. Current unsupervised domain adapta-
tion methods, have unrealistic assumption of access to large unlabeled target
dataset. A more realistic scenario is having few labeled image samples from tar-
get domain, a challenge known as Few-Shot Domain Adaptive Object Detection
(FSDAOD) [5,4,20,8].

The discrepancy between the source (abundant train data) and target (few-
shot samples) domains arises due to differences in data acquisition protocols
[15,20], such as microscopic quality, lighting conditions, microscopic-lens resolu-
tion, and camera-lens quality. This challenge is further compounded by extreme
data imbalance in microscopic cells [6,12,13], visual similarity between the back-
ground and foreground, and intra-foreground visual similarity, leading to higher
false-positive and false-negative rates. Recently, unsupervised and few-shot do-
main adaptive approaches have been proposed [4,5,20] to tackle this limitation.
However, as our experimental results show (Table 1, 2, 3), these methods suffer
from overfitting, leading to less generalization.

Since in few-shot domain adaptive object detection, only a few samples of any
class are available from the target domain, a strategy for the feature alignment
could be to enforce that, the representation of the same class across the domain
is same. However, this results in over-adaptation to the smaller few-shot set. To
address this challenge, we propose intra and inter-Domain Feature Alignment
technique; I2DA, that addresses (a) the cross-domain shift between similar class
cells by aligning the inter-domain feature level representations of cells coming
from the same classes, and (b) Intra-Domain Feature Consistency at the cell
level to learn distinguishable features for each class because the foreground cells
in microscopic datasets possess high visual similarity with the background cells.
This is especially challenging in the case of malarial-affected cells where the
foreground classes are very similar to the background platelets, resulting in a
higher rate of false positives (Supp. Figure 1). Secondly, we propose a Domain-
Generalized Class Balancing Cut-Paste strategy ; CBCP to tackle the extreme
class imbalance when dealing with microscopic datasets. CBCP balances the
overall count of the rare and abundant classes in the data. We propose generat-
ing samples of rare classes to match the abundant class. New samples are created
by replicating existing ones with target domain-inspired visual augmentations
to avoid over fitting. Simply stating, we crop the existing cells, apply visual aug-
mentations, and paste them in carefully selected locations in the images where no
other cells are present. The extensive experimentation on two public microscopic
datasets M5-Malaria [15] and Raabin-WBC [11] demonstrate the effectiveness of
our method by outperforming with an increase in average mAP@50 by 8.3 point
and 14.6 points (respectively) as compared to other competitive baselines.

2 Methodology

Preliminaries: Let {(xs
i ,y

s
i )}

Ns
i=1 ∈Ds be dataset of images from source do-

main and {(xt
i,y

t
i)}

Nt
i=1 ∈Dt be few-shot dataset from the target domain. Where,

(xi,yi) is image and ground-truth pair for object detection task. Note that,
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Fig. 1: Class Balancing Cut Paste strategy (CBCP): We first compute the meta-
data and increment-stats from the abundant source dataset and few target im-
ages and then increment cells to the images with less pre-existing cells.

|Ds|>>|Dt|, and label space in both the domains is same. The N be the total
number of classes, and both datasets suffer from class imbalance. Objective is to
train the object detector F , using the source dataset Ds and overcome domain
shift challenges by using few shot target dataset Dt.

2.1 Domain Generalized Class Balancing Cut-Paste

To address the limitations of existing image resampling techniques [6]we propose
to increase the count of rare class instances to match the maximum instances
class count. Instead of matching the number of instances per class exactly, our
goal is to achieve a more realistic and balanced distribution. In the text following
we will use the terminology of class-size to indicate number of instances per class
Class Balancing Cut Paste Strategy (CBCP): Given, Ds and Dt, we con-
struct a new dataset Daug from their combination, such that |Daug| = |Ds| but
has balanced class-sizes (Fig. 1). From Ds we collect following data statistics: (1)
Oc : number of instance per class c, (2) If = {(xs

i ,y
s
i ) s.t. |ys

i | < r & (xs
i ,y

s
i ) ∈

Ds} (3) Ig = {(xs
i ,y

s
i ) s.t. |ys

i | ≥ r & (xs
i ,y

s
i ) ∈ Ds} (4) Pc

s images with cth class
present, Pc

s ⊂ Ds. We need to determine how many times each instance has to
be replicated, Sc = (max({Oc}Nc=1)−Oc)/Oc, to balance the distribution (see
supplementary Algorithm 1). However, these replicated instances are only added
in the images xi ∈ If thus trying to keep distribution of instances in each image
about same. Specifically, for each instance in Pc

s , we create its multiple copies as
per Sc, by applying random visual augmentations. Thus creating the list Pl of
candidates to be used for balancing. Next, for each xi ∈ If using ys

i we identify
regions where no object is present. Objects from Pl are randomly selected and
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Fig. 2: Proposed approach: We first build our class-wise balanced dataset through
our proposed Class Balancing Cut Paste (CBCP) augmentation strategy (Fig 1),
then train the model with our proposed inter-intra-domain alignment (I2DA);
inter-domain instance feature-level alignment and intra-domain instance feature-
level consistency. We extract multi-layer neck features and upsample them to a
common size, followed by the extraction of pooled object-level features, which
are then passed to the similarity-dissimilarity and classification module.

placed at non-overlapping locations, taking in consideration that distribution of
classes is balanced.

To achieve a domain generalized we extract a random object from a random
image xj ∈ Dt and paste it in xz ∈ Daug and update the corresponding an-
notations. Note that for random visual augmentation, we choose random color
intensity variation and random Gaussian blurring (see supplementary). We only
increment cells to If to ensure more realistic real world simulation. The overall
flow of the process is shown in Fig 1.

2.2 Inter-domain Alignment and Intra-domain Class Consistency

Generally feature level adversarial loss is used to align the features across domain.
However, such strategies gets overwhelmed by large background information and
fail to overcome domain shift at object level. Applying object level contrastive
loss [2] for domain adaptive object detection, results in high false positive when
there is high visual similarity between foreground and background. This is espe-
cially true for malarial peripheral blood smear slides.

To enforce feature alignment across domain, we propose maximizing the dis-
similarity between instances of different classes while minimizing the similarity
between instances of the same class. Specifically to achieve we formulate a novel
solution, (see Fig 2), aiming to learn more robust instance features. The simi-
larity and dissimilarity must be performed within the domain as well as across
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Table 1: Results in mAP@50(%) on Malaria[15] test set.
Malaria-HCM-1000x → Malaria-LCM-1000x

Method mAP@50(%) Gametocyte Schizont Trophozoit Ring

Source 19.9 3.9 0.5 55.9 19.3

Oracle 43.7 33.3 4.3 81.6 55.7

Shots 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5

FsDet[17] 11.2 11.5 12.9 11.8 11.2 12.3 0.0 0.0 0.0 27.7 28.3 30.7 5.4 6.5 8.6

VFA [7] 8.9 6.5 8.1 9.1 3.2 24.5 0.1 3.3 0.2 17.8 19.4 6.5 12.8 0.2 1.3

FDP[1] 14.6 14.7 20.5 16.4 8.1 33.7 1.20 10.1 1.3 27.4 24.4 33.3 13.5 16.4 14.0

AsyFOD[4] 26.0 29.1 33.5 14.9 23.3 36.8 1.20 7.0 2.80 59.4 60.7 64.7 28.7 31.8 30.9

AcroFOD[5] 32.9 42.5 39.1 27.6 50.9 62.9 17.6 22.1 5.40 58.7 62.7 61.3 27.8 34.4 27.0

Ours 44.7 45.9 48.9 71.4 66.0 68.2 11.4 18.1 30.4 66.9 66.7 65.6 29.3 32.6 31.5

domain to learn the diversity of intra-class features and capture inter-class vari-
ations.

We extract multi-layer instance-level features from the neck of the detector
F . The reason behind choosing multi-layer neck features is to take the most
representative small, medium, and large-size object-level features. We up-sample
these features to (S × S) and extract all the cell features corresponding to its
ground truth, followed by average pooling.

Let, nc be the total instances of objects belonging to the class c in the batch.
Let vik and vil denote the feature vector of object k and l of cth class. We
compute pairwise cosine similarity, denote by sim(vik,vil), between features of
all the objects of same class. We compute the similarity loss for each level of
features. We sum up all the losses to compute the overall similarity loss Lsim.

Lsim =
∑
c

1(
nc

2

) nc−1∑
k=1

nc∑
l=k+1

sim(vck,vcl). (1)

To improve the classification between classes during the domain shift, we
maximimize dissimilarity loss. Instead of increasing dissimilarity between in-
stances, we push for increasing dissimilarity between the mean representation of
each class. Let v̄ci

be the mean of the nci instances of cith class.
We compute pair-wise similarity between mean-feature representations of

classes. Specifically, similarity d is computed using cosine similarity function
between pairs of mean-feature representations of two classes. If sd < m, set
d = 0. Finally, the total dissimilarity loss Ldis can be obtained by summing up
the resulting d values for all pairwise combinations of mean feature vectors:

Ldis =
C−1∑
ci=1

C∑
cj=ci+1

max

(
0,

(
v̄ci · v̄cj

∥v̄ci∥∥v̄cj∥

)
−m

)
. (2)

We boost the learning with a classifier to learn more robust features for each
class. We compute the C class-wise classification losses, let lkc denote the class



6 S. Inayat et al.

Table 2: Results in mAP@50(%) on Raabin-WBC [11] test set.
Raabin-WBC-HCM → Raabin-WBC-LCM

Method mAP50(%) Large Lymph Neutrophil Small Lymph Monocyte

Source 27.2 25.1 59.6 22.9 1.0

Oracle 75.0 90.9 98.1 83.2 27.7

Shots 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5

FsDet[17] 26.5 28.5 30.1 41.5 24.3 38.1 17.5 31.8 44.1 23.7 34.4 29.6 23.1 23.7 8.7

VFA[7] 30.3 33.2 45.2 44.6 28.6 59.8 25.7 59.8 66.0 48.7 27.7 42.6 2.40 16.7 12.5

FDP[1] 35.9 32.4 44.3 28.2 36.2 59.1 60.7 39.8 66.8 46.2 34.0 35.2 8.60 19.9 15.9

AsyFOD[4] 35.6 38.1 26.3 37.2 42.2 39.3 58.3 48.7 43.1 46.5 51.1 22.4 0.3 10.4 0.3

AcroFOD [5] 44.9 47.2 61.2 50.5 64.1 82.1 88.1 89.1 95.9 37.6 30.7 59.6 3.5 5.1 7.3

Ours 64.2 62.6 70.8 74.1 76.0 75.2 87.2 86.0 94.3 54.7 46.8 42.5 40.6 41.6 71.3

loss of instance k in cth class, Let nc be the number of instances in class c, then
the instance level classification loss Lcls is given by:

Lcls =
C∑

c=1

(
1

nc

nc∑
k=1

lkc

)
(3)

Finally, we compute the mean similarity (Equation 1), dissimilarity (Equa-
tion 2), and classification (Equation 3) losses for the three levels, followed by
multiplication with weights λ1, λ2 and λ3 with the similarity, dissimilarity, and
class mean losses respectively. We add up the losses as our final I2DA loss,
LI2DA is represented as:

LI2DA = λ1Lsim + λ2Ldis + λ3Lcls (4)

3 Experiments and Results

Datasets: M5[15] is a large-scale malarial domain adaptive cell detection dataset
captured from two different microscopes, one high cost, and one low cost, and the
corresponding images captured from three different resolution levels. We utilized
their standard train val test splits for training whereas for few-shot settings, we
randomly sampled a set of 8 images as per [4,5] while also selected images as
per our strategy (described in section below) for 2-shot, 3-shot, and 5-shot. We
consider the shots as the number of images per a specific category.
Raabin-WBC (R-WBC) is a white blood cell dataset comprising images cap-
tured by a mobile phone camera. 17819 images belong to the high-cost micro-
scope and 3167 images belong to the low-cost microscope. The authors did not
provide any standard train, val, or test splits for the detection task, hence we
first extracted center cropped images and as per ‘Label2’, for the four following
classes, Large Lymph, Neutrophill, Small Lymph, and Monocyte. We then made
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Table 3: mAP@50(%) on [15] & [11] test sets on 8 random few-target images.

Data
Malaria Raabin-WBC

mAP@50 Gamet. Schizo. Troph. Ring mAP@50 L-Lymp. Neutro. S-Lymp. Mono.

AsyFOD 30.2 23.8 1.3 61.8 33.9 33.7 28.4 48.6 56.2 1.4
AcroFOD 33.1 46.8 3.8 56.9 24.9 48.9 69.1 90.7 27.7 7.9

Ours 40.3 62.3 2.0 64.4 32.6 55.7 71.3 80.6 49.6 23.9

Table 4: Ablation of each component of our method on a 5-shot set
CBCP Lsim Ldis Lcls M5 R-WBC

✓ ✗ ✗ ✗ 42.1 69.2
✗ ✓ ✗ ✗ 40.3 63.8
✗ ✗ ✓ ✗ 41.9 65.2
✗ ✗ ✗ ✓ 41.9 59.3
✗ ✓ ✓ ✗ 42.4 68.5
✗ ✓ ✗ ✓ 44.3 67.6
✗ ✗ ✓ ✓ 43.9 65.4
✗ ✓ ✓ ✓ 45.4 66.5
✓ ✓ ✓ ✓ 48.9 70.8

random splits of the train (2052 images), val (150 images), and test (450 images)
for both the microscope data and chose the few-shot samples similar to M5.
Implementation Details: Our proposed approach is object detector agnostic,
however, for a fair comparison with [4,5], we have used [10] as a base model.
For our experiments (conducted on GTX1080 GPU), batch-size was set to 4. We
develop customized batches for each epoch such that each batch of the extracted
features contains n ≥ 1 object from the few-shot target set. For each batch, we
select 1 image from the few-shot set, 2 images from the real source, and 1 image
from the augmented source. However, for training with larger batch sizes, we
suggest allocating 2% of the batch size to the real target, 68% to the real source,
and 30% to the augmented source dataset. The λ1 λ2 and λ3 values are set to
0.005, 0.005, and 0.001 respectively. We chose low weights to scale the complete
I2DA loss with the YOLOv5 detection loss.

3.1 Results

We perform two sets of experiments, one with 8 random images as per [4,5] that
may have any number of images per class or even miss a rare class. The other
set of experiments is performed on our variation of k-shot settings. We define
our shots as k images per class. Malaria results of the baselines [17,7,1,4,5] and
our work on 2-shot, 3-shot, and 5-shot images are shown in Table 1. We evalu-
ated our models based on mAP@50 because all the given baselines [17,7,1,4,5]
yielded results in mAP@50. But for [4,5] we additionally evaluated the models on
mAP@50:95 and average precision and average recall. Note that we performed
100 epochs of adaptation and reported results over the test dataset for the model
obtained after 100 epochs. The same experimental settings are used for all the
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Ground Truth AcroFOD I2DA (ours) I2DA + CBCP (ours)

gametocyte schizont trophozoite ring wrong

Fig. 3: Qualitative results of LCM Malarial defected regions after adaptation.

comparative methods. As shown in Table 1, our work outperforms the existing
competitive baseline by a good margin in each shot setting. Table 2 shows the
results of the Raabin-WBC test set and proves that our method works well for
large-size objects as well. Table 3 shows our results obtained on 8 random target
domain images and as visible our method outperforms in these settings as well.
Please refer to the supplementary for detailed results and comparisons. Fig. 3
shows the qualitative results of AcroFOD [5] and our methods. AcroFOD has
given some wrong predictions and was comparatively less confident in the cor-
rect predictions. In contrast, ours is more confident in the correct predictions
and the false-positive rate is comparatively less.

3.2 Ablation

Table 4 shows the ablation studies of each of the I2DA loss components and
the CBCP module on 5-shot sets of M5 and Raabin-WBC, respectively. The
results validate the effectiveness of each component of the I2DA loss and the
CBCP module. I2DA and CBCP complement each other hence obtaining the
best results when applied together. We also performed ablation of our CBCP
augmentation with AcroFOD alignment algorithm. AcroFOD alignment results
w/o augmentation (M5:37.8 | RWBC:58.7) are much less than our alignment-
only I2DA results(M5:44.2 | RWBC:66.5). AcroFOD alignment prioritizes target-
similar examples, but we believe that small few-shot sets can’t fully represent
the whole target population. Our approach extracts moderate knowledge from
the target set, ensuring generalizability to larger test sets while optimizing per-
formance across the majority of few-shot scenarios.

4 Conclusion

We have put forwarded a novel solution to tackle FSDAOD in few shot settings
in microscopic imaging. The intra-class feature space variation is minimized and
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inter-class variation is maximized irrespective of domains to boost the perfor-
mance with a specialized feature-level instance classifier. To handle the extreme
class imbalance in microscopic datasets, especially in domain adaptive few-shot
settings, we devise a novel strategy to balance the skewed data distribution with
our cut-paste augmentation strategy. Extensive experimentation validate the ef-
fectiveness of our method as compared to the existing competitive baselines.
Our method outperform the competitive baselines on average 8.3 points on M5
dataset and 14.7 points on Raabin-WBC demonstrating it capability to handle
variable cell sizes.
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