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Abstract. Survival analysis is critical for clinical decision-making and
prognosis in breast cancer treatment. Recent multimodal approaches
leverage histopathology images and bulk RNA-seq to improve survival
prediction performance, but these approaches fail to explore spatial dis-
tribution at the cellular level. In this work, we present a multimodal
hypergraph neural network for survival analysis (MHNN-surv) that in-
troduces a pre-trained model for spatial transcriptomic prediction. The
method is characterized by making full use of histopathological images
to reveal both morphological and genetic information, thus improving
the interpretation of heterogeneity. Specifically, MHNN-surv first slices
Whole-Slide Imaging (WSI) into patch images, followed by extracting
image features and predicting spatial transcriptomic, respectively. Sub-
sequently, an image-based hypergraph is constructed based on three-
dimensional nearest-neighbor relationships, while a gene-based hyper-
graph is formed based on gene expression similarity. By fusing the dual
hypergraphs, MHNN-surv performs an in-depth survival analysis on breast
cancer using the Cox proportional hazards model. The experimental
results demonstrate that MHNN-surv outperforms the state-of-the-art
multimodal models in survival analysis.

Keywords: Survival analysis · Multimodal data integration · Hyper-
graph neural networks.

1 Introduction

Survival analysis is a pivotal statistical tool in medical research [1], where it
quantitatively evaluates the time until an event of interest, such as recurrence or
mortality. Survival risk stratification is crucial for understanding the variability
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in breast cancer progression and outcomes, thereby aiding clinicians in person-
alizing treatment strategies [2]. The adoption of Whole Slide Imaging (WSI) has
significantly advanced survival analysis by providing detailed histopathological
insights that surpass the capabilities of traditional manual microscopy, enhanc-
ing the accuracy of prognostic models [3]. However, the reliance on WSI alone,
a single-modality approach, is limited by focusing solely on morphological fea-
tures. This limitation fails to account for the genetic and molecular dynamics
that significantly influence tumor behavior and patient prognosis, highlighting
the necessity for the integration of gene expression data into survival analy-
sis [4,5]. Consequently, integrating gene expression and WSI could enrich the
survival analysis, offering a comprehensive view of the tumor’s biology and sub-
stantially enhancing the prognostic performance of models [6,7].

Nonetheless, current multimodal approaches that utilize bulk RNA sequenc-
ing encounter a critical limitation of the absence of spatial resolution, which
aggregates data from thousands of cells, obscuring the detailed intratumoral
heterogeneity. The precise spatial distribution of gene expression is crucial for
a thorough understanding of the tumor microenvironment [8], thus facilitating
treatment response prediction and tumor progression pathway elucidation [9]. In
detail, areas within tumors with high expression levels of genes associated with
aggressive cancer growth may indicate poor prognosis [10]. Additionally, the
spatial data may identify microenvironmental niches within tumors resulting
in resistance to standard therapies, thereby facilitating the design of targeted
therapies [11]. Consequently, introducing the spatial information into survival
analysis cooperating with gene expression and WSI could leverage comprehen-
sive information to achieve more accurate prognostic predictions, which will fill
the crucial gap in the design of multimodal prognostic models.

Herein, we aim to utilize spatial transcriptomic data for survival analysis,
countering the lack of spatially informed gene expression due to the limited
availability and high cost of spatial transcriptomic technology. This paper in-
troduces a novel model, the Multimodal Hypergraph Neural Network (MHNN-
surv), which leverages Whole Slide Image (WSI) data to predict gene expressions
with spatial details, aiming to address the data acquisition challenges and en-
hance the multimodal prognostic model with comprehensive spatial insights, as
illustrated in Fig.1. MHNN-surv begins by standardizing WSI data through an
intensive preprocessing stage for dependable feature extraction. Subsequently,
it constructs dual hypergraphs: one based on image data and another on gene
expressions, reflecting the tissue’s morphological complexities and spatial gene
expression. Finally, MHNN-surv integrates these hypergraphs to learn a global
representation of WSI, enabling enhanced survival analysis with precise prog-
nostic predictions.

The proposed model is a comprehensive multimodal learning framework that
integrates diverse modalities with global structure consistency. The contributions
of this work are summarized as follows:
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– To the best of our knowledge, this is the first work to introduce spatial
transcriptomic data for survival analysis, with mitigating the absence of
paired spatial genomics data and survival information cohorts.

– We propose a novel model named MHNN-surv to leverage a dual hypergraph
neural network to integrate the comprehensive information of WSI data,
gene expression, and spatial information for survival analysis, thus enhancing
cancer prognostics performance with spatial gene expression insights.

– The integration of dual hypergraphs on multimodal data performs a com-
prehensive and in-depth survival analysis on breast cancer, with the exper-
imental results demonstrating the superior performance of MHNN-surv in
comparison of the state-of-the-art multimodal models.

2 Related Work

2.1 Multimodal Deep Learning for Survival Analysis

Multimodal approaches have aimed to combine Whole Slide Imaging (WSI) with
genomic data, especially gene expression profiles. This strategy seeks to amal-
gamate the morphological insights from WSI with the genetic drivers of cancer
progression, thereby portraying a fuller biological narrative. Proposals such as
Multimodal Autoencoders aim to predict different subtypes of breast cancer pa-
tients and their survival [14]. An unsupervised method is developed to encode
multimodal patient data into a universal feature representation independent
of data type or modality [15]. Moreover, MGCN-CalRF utilizes a multimodal
graphical convolutional network with calibrated classifier models from random
forests for accurate prognosis prediction of human breast cancer [16]. Such mul-
timodal models have proven that integrative models markedly enhance survival
predictions over histology-only approaches.

2.2 Hypergraph Applications in Biomedical Computing Research

Hypergraphs excel in modeling complex and higher-order relationships between
entities, making them ideal for managing the intricate nature of cancer data.
Unlike Graph Neural Networks (GNN), HyperGraph Neural Networks (HGNN)
capture both pairwise and group interactions, suitable for addressing cancer’s
layered complexity [13]. In survival analysis, HGNN effectively integrates diverse
data sources and embraces the collective dynamics of biological systems. Several
studies highlight their ability to identify critical gene sets and perform enrich-
ment analysis, showcasing the versatility of hypergraphs in biological data anal-
ysis [12]. The multifactorial nature of cancer justifies integrating morphological
and genetic influences on patient outcomes using hypergraphs. Our framework
not only offers a more accurate depiction of the tumor environment but also
improves prognostic efficacy, positioning it as a progressive solution in survival
analysis.
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Fig. 1: MHNN-surv: An integrated framework for survival prediction using mul-
timodal hypergraph neural networks. Spot-based patches are sliced from WSI
and utilized to construct dual hypergraphs. By fusing two hypergraphs, it learns
a global WSI representation to predict clinical outcomes.

3 Proposed Method

3.1 Problem Formulation

Given a WSI dataset of n samples, W , each histopathological image is sliced to
a set of patches P = {P1,P2, . . . ,Pm}. The size of the patch is set to 224×224,
which is consistent with the spot of the spatial transcriptomic. Since the ex-
tracted patches may contain background areas that do not contain enough cells
for further study, we retain patches with a tissue density greater than 0.7. These
patches are used to extract image features and build image-based hypergraphs
Gp, as well as to predict gene expression and construct gene-based hypergraphs
Gg. Ultimately, a unified hypergraph G is fused for predicting clinical outcomes
by applying Cox proportional hazard model [18] to calculate the hazard rate as,

h(t|P) = h0(t) exp(fθ(P)). (1)

where h(t|P) is the hazard function at time t for an individual with a given
patch images P , h0(t) corresponds to the baseline hazard, and fθ(P) represents
the risk score derived from the MHNN-surv model with the parameters θ.

3.2 Dual Hypergraphs Construction

Image-based hypergraph construction. Due to the color of histology sam-
ples stained with H&E often varying between and within laboratories and from
one batch to the next, we standardize the staining variance and brightness of
selected patches with the help of StainTools 4.

4 https://github.com/Peter554/StainTools

https://github.com/Peter554/StainTools
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For constructing the image-based hypergraph Gp = (Vp,Ep,Wp), the 2048-
dimensional features of patches are extracted RestNet50 pre-trained on Ima-
geNet and set as the vertex set Vp = {vp1,vp2, . . . ,vpm}, vpi ∈ R2048. Con-
ventionally, we set Wp = I ∈ Rk×k, k denotes the number of image-based hy-
peredges. As for the hyperedge set Ep = {ep1, ep2, . . . , epk}, in contrast to the
traditional computation of the two-dimensional Euclidean distance metric, we
use pixel values indicating color as a third dimension to measure pairwise dis-
tances in 3-dimensional space. The inspiration comes from the fact that although
some patches are physically close to each other in tissue, histopathological images
may reveal that they belong to different tissue layers. The third dimension of i-th
node vpi is computed by weighted color feature zi to augment the morphological
analysis with histopathological image color insights,

zi =
ri · Vr + gi · Vg + bi · Vb

Vr + Vg + Vb
, (2)

where ri, gi, and bi denote the average value of the RGB channels in the i-
th patch, Vr, Vg, and Vb are calculated by the variance of the RGB values of
the neighboring 10 patches. In this way, a hypergraph epi can be collected by
computing the 3D Euclidean distances of pairs of patches and then connecting
K nearest neighbor nodes,

d(vpi,vpj) =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (3)

Gene-based hypergraph construction. After extracting patches from
whole slide images (WSI), we built a Nuclei-Graph using the HoVer-Net model
for nuclei segmentation and classification. Features including morphometric data
and texture descriptors are extracted for each nucleus. The edges of the graph are
determined based on spatial proximity. Meanwhile, we utilized an IGI-DL model
[24] pre-trained on spatial transcriptomic data to predict the 69-dimensional
gene expression profile of breast cancer at the spot level.

The gene-based hypergraph Gg = (Vg, Eg,Wg) is desired to utilize spatial
transcriptome of the patches as the vertex set and build hyperedges based on
the similarity of gene expression, where Vg = {vg1, vg2, . . . , vgm}, vgi ∈ R69,
comprises 69-dimensional gene expression profiles. Here, we set Wg = I l×l, l
denotes the number of gene-based hyperedges. For constructing the hyperedge
set Eg = {eg1, eg2, . . . , egk}, the cosine similarity is calculated to measure the
pairwise similarity and collect K nearest neighbor nodes into a hypergraph:

cos(vgi, vgj) =
vgi · vgj

∥vgi∥∥vgj∥
(4)

3.3 Hypergraph Fusion for Survival Analysis

MHNN-surv incorporates an innovative fusion strategy that synergizes dual hy-
pergraphs, integrating morphological features from Whole Slide Images (WSI)
and spatially predicted gene expression data into a cohesive framework.
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Fusion strategy. The goal is to merge the vertices and edges ofdual hyper-
graphs into a unified hypergraph G = (V ,E,W ),

G = Gp ⊕ Gg,

where V = Vp ∪ Vg, E = Ep ∪ Eg, W = Wp ⊘Wg. (5)

where ∪ denotes the union of two sets, ⊘ indicates diagonal concatenation. After
hypergraph fusion, a vertex vi ∈ R(2048+69) includes both image features and
gene expression, and the number of hyperedges is increased to k + l.

This concatenation strategy is designed to bridge the rich morphological in-
sights captured in images with the intricate spatial genetic patterns derived from
gene expression data.

Learning global representation of the unified hypergragh. We design
the hypergraph convolutional layer as the backbone of MHNN-surv. The hyper-
graph convolutional layer mainly comprises three steps including node feature
transformation, hyperedge feature generation, and node feature aggregation. V
is first multiplied with the learnable parameter θ to obtain the transformed fea-
tures. Next, the transformed features are gathered by E to obtain the hyperedge
features Y = {y1,y2, . . . ,ym}. Finally, the hyperedge features are multiplied to
yield the global representation of the WSI by z =

∑m
i=1 ciyi, where ci is the

attention score obtained by attention layers.
Survival analysis implementation. The survival analysis model is em-

ployed to obtain survival hazard score. It can be categorized into two main
types: regression-based approaches and ranking-based approaches. The Cox pro-
portional hazard model is one of the most commonly used regression models in
survival analysis. However, it may not effectively distinguish between patients
with closely occurring survival times. Thus, we consider a deep ordinal Cox model
[17]to generate the hazard score, which adds a ranking-based regularization term
to the Cox model. The formulation of the loss function is as follows:

L =
P∑
i=1

δi
(
σ(zi)− log

∑
j∈R(ti)

exp(σ(zj))

+
∑

j∈R(ti)

I(i, j)max(0, 1− exp(σ(zi)− σ(zj)))
)
, (6)

where P denotes the number of patients, δi is the censoring indicator, and R(ti)
represents the set of patients still at risk at time ti. The function σ(z) calculates
the hazard risk using a multilayer perceptron. The indicator function I(i, j) = 1
if patients i and j form a comparable ranking pair, and 0 otherwise.

4 Experiments and Results

4.1 Experimental Settings

Dataset. In this study, the testing dataset is the Breast Invasive Carcinoma
(BRCA) dataset extracted from Cancer Genome Atlas (TCGA) [19], with 99
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Table 1: Comparison results with SOTA methods in survival prediction (C-
Index).

Model BRCA Model BRCA

WSI only

SCNN [24] 0.558

WSI+
Gene

GSCNN [26] 0.616
DeepConvSurv [22] 0.544 PAGE-NET [29] 0.608
Histology CNN [20] 0.571 MCAT [27] 0.617
DSCA [28] 0.587 Pathomic Fusion [21] 0.625

Gene only Cox-EN [27] 0.598 GC-SpLem [30] 0.628
Cox-PASNet [23] 0.605 PMFN-SSL [25] 0.631
WSI+Spatial Gene MHNN-surv 0.673

patient samples. We processed over 1065 gigapixel images from the BRCA case,
extracting 41229 patches for detailed analysis. Evaluation Metrics. We em-
ployed the most popular evaluation metrics in survival analysis, the concordance
index (C-index) [20] which estimates the probability of concordance between pre-
dicted and observed responses,

C =
1

n

∑
i∈{1...N |δi=1}

∑
tj>ti

I(pi > pj), (7)

where n represents the number of comparable pairs, I[.] is the indicator function,
ti (tj) denotes the actual observed time, and pi (pj) is the predicted risk score.
The C-index spans the range from 0.5 to 1. The higher C-index represents the
more accurate survival prediction.

4.2 Experimental Results

As shown in Table 1, our study highlights the superior performance of the
MHNN-surv model in predicting breast cancer survival by integrating spatial
gene expression data with pathological imaging. In comparison to state-of-the-
art unimodal models, MHNN-surv achieves superior performance. In detail, the
traditional gene-based models, such as Cox-EN [27] and CoxPASNet [23], are
limited to genetic information, lacking the ability to capture the morphologi-
cal complexities evident in pathological images. Conversely, models that focus
solely on WSI, including SCNN [24], DeepConvSurv [22], Histology CNN [20],
and DSCA [28], offer valuable insights into the physical structure of tumors but
miss out the genetic context. Furthermore, MHNN-surv maintains its compet-
itively superior performance in comparison of other multimodal fusion models
such as GSCNN [26], PAGE-Net [29], MCAT [27], Pathomic Fusion [21], GC-
SPLem [30], and PMFN-SSl [25]. The unique aspect of our proposed model is
the incorporation of spatially resolved gene expression data, which introduces a
spatial context to the genetic information. This achieves a deeper understanding
of the tumor environment, enhancing the predictive capabilities of our proposed
model and outperforming conventional multimodal approaches.
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(a) WSI (b) Gene (c) WSI+Spatial Gene

Fig. 2: The KM-estimation curves of MHNN-surv on TCGA-BRCA.

Table 2: Experimental Results on Ablation Study

BRCA

Model MHNN-g MHNN- ic MHNN-icc MHNN-icg MHNN-surv

0.601 0.633 0.651 0.647 0.673

The experiments are also extended to the prognostic differentiation between
high and low-risk groups, utilizing univariate KM estimation as depicted, as il-
lustrated in Fig. 2. All samples are grouped via survival risk by MHNN-surv.
The reliability of our results is further demonstrated by the significant differences
in p-values and probability curves between the groups. In conclusion, the experi-
mental results demonstrate the superiority of the proposed MHNN-surv model in
comparison to both unimodal and multimodal models on breast cancer survival
prediction, by leveraging spatially resolved gene expression data alongside patho-
logical imaging. Furthermore, MHNN-surv leverages the fusion of hypergraphs
on diverse modalities, with comprehensive information for survival analysis, thus
achieving accurate prognostic predictions.

4.3 Ablation Experiments for MHNN-surv

To validate the contributions of each module within our methodology, the ab-
lation experiments are performed. These experiments investigate the individual
and combined effects of utilizing image coordinates in MHNN-ic, augmenting
the coordinates with RGB data in MHNN-icc, integrating spatial genomic data
alongside image coordinates in MHNN-icg, and focusing exclusively on spatial
genomic data in MHNN-g. As reported in Table 2, demonstrate the superior
prognostic accuracy of our comprehensive model MHNN-surv which integrates
all aforementioned modalities, particularly highlighting the importance of spatial
genomic data in enhancing cancer suivival predictions.

Meanwhile, the experimental results have also proven that the hypergraph-
based fusion technique achieves superior performance compared to the tradi-
tional unimodal or multimodal methods on WSI-only, Gene-only, and Multi-
modal data in table 1, respectively. The main reason is that leveraging the fusion
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of hypergraphs from diverse modalities with comprehensive information enables
accurate prognostic prediction.

5 Conclusion

In this work, we propose a multimodal hypergraph neural network for breast can-
cer survival analysis that merges histopathology images with spatial genomics,
namely MHNN-surv. It leverages the fusion of hypergraphs on diverse modalities
to enhance cancer prognostics performance with spatial gene expression insights.
MHNN-surv enriches breast cancer research by offering comprehensive and deep
insights into the tumor microenvironment, which may facilitate future research
in personalized medicine in breast cancer prognosis and other medical research.
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