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Abstract. Body bradykinesia, a prominent clinical manifestation of Parkinson’s 
disease (PD), characterizes a generalized slowness and diminished movement 
across the entire body. The assessment of body bradykinesia in the widely em-
ployed PD rating scale (MDS-UPDRS) is inherently subjective, relying on the 
examiner’s overall judgment rather than specific motor tasks. Therefore, we pro-
pose a graph convolutional network (GCN) scheme for automated video-based 
assessment of parkinsonian body bradykinesia. This scheme incorporates a cau-
sality-informed fusion network to enhance the fusion of causal components 
within gait and leg-agility motion features, achieving stable multi-class assess-
ment of body bradykinesia. Specifically, an adaptive causal feature selection 
module is developed to extract pertinent features for body bradykinesia assess-
ment, effectively mitigating the influence of non-causal features. Simultaneously, 
a causality-informed optimization strategy is designed to refine the causality fea-
ture selection module, improving its capacity to capture causal features. Our 
method achieves 61.07% accuracy for three-class assessment on a dataset of 876 
clinical case. Notably, our proposed scheme, utilizing only consumer-level cam-
eras, holds significant promise for remote PD bradykinesia assessment. 

Keywords: Parkinson’s disease, body bradykinesia, graph convolution net-
work, causality guidance, feature fusion. 

1 Introduction 

Parkinson’s disease (PD) stands as a prevalent neurodegenerative condition among the 
elderly [1]. Currently, the Movement Disorder Society‐sponsored revision of the Uni-
fied Parkinson’s Disease Rating Scale (MDS‐UPDRS) serves as the predominant clin-
ical tool for PD assessment [2]. In particular, body bradykinesia (i.e. global spontaneity 
of movement, item 3.14 in MDS-UPDRS) plays a pivotal role in indicating the global 
slowness in patients. Severity is graded on a scale from 0 to 4, correlating with the 
extent of global slowness and poverty of spontaneous movements. The subjective na-
ture of this assessment, attributed to the absence of specific examination tasks for 
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assessing body bradykinesia, results in significant variability among different examin-
ers. Therefore, an automated assessment system for body bradykinesia is needed to en-
sure consistent ratings. To the best of our knowledge, there is currently no existing 
research on automated assessment for body bradykinesia. 
 Various initiatives have been undertaken to develop video-based automated assess-
ments for different motor examination tasks within MDS-UPDRS. These approaches 
offer notable advantages, including convenience, minimal equipment requirements, and 
non-contact interaction. The fundamental process involves utilizing a pose estimator to 
derive human skeletons from the video, extracting motion features, and employing a 
classifier for automated assessment [3-10]. For example, Lu et al. [3] used DD-Net, a 
structure based on convolutional neural network (CNN), for extracting motion features 
from gait task. Notably, graph convolutional networks (GCNs) can explicitly model 
spatial relationships in human body skeletons [11], making it well-suited for video-
based assessments of PD examination tasks [4, 5, 9]. Zhang et al. [5] employed GCN 
with a pyramidal attention module to enhance the capture of parkinsonian tremor sig-
nals. Guo et al. [4] designed a sparse adaptive GCN to improve the modeling of spati-
otemporal logical connections for more accurate leg-agility assessment. 

To achieve the automated assessment of PD body bradykinesia, we propose a GCN-
based scheme, marking the first attempt to combine motion features extracted from leg-
agility and gait videos for indirect rating.  The leg-agility task, involving rapid foot 
raising and stomping, effectively reveals slowness severity [12]. Meanwhile, the gait 
task, where patients walk towards and away from the examiner, allows for the observa-
tion of spontaneous movement poverty, such as the lack of arm swing [13, 14]. How-
ever, challenges arise from the presence of non-causal features, such as those irrelevant 
to body bradykinesia assessment. Therefore, the key challenge in this study is how to 
enhance the fusion of causal features while suppressing non-causal ones. 

To tackle this challenge, our approach involves guiding the model to unearth causal 
features before the fusion stage. Therefore, we design a causality-informed fusion net-
work based on GCNs for the automated assessment of PD body bradykinesia. Specifi-
cally, human skeletons for leg-agility and gait are firstly extracted using an advanced 
pose estimator, followed by motion feature extraction through GCN encoders. Subse-
quently, a novel adaptive causal feature selection module is developed to learn the con-
tribution of each channel, driving the model to capture causal features effectively. Fur-
thermore, a causality-informed optimization strategy is designed to guide the iterative 
optimization of GCNs and causal feature selection modules through opposing optimi-
zation objectives, further enhancing the ability to capture causal features.  

In summary, the contributions of our work are as follows:  
 Clinically, we pioneer a framework for video-based automated assessment of PD 

body bradykinesia, requiring only consumer-level cameras.  
 Technically, we propose a causality-informed fusion network, enhancing the fu-

sion of causal features through a novel adaptive causal feature selection module 
and a causality-informed optimization strategy. 
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2 Method 

To achieve automated assessment of PD body bradykinesia, we propose a causality-
informed fusion network which effectively enhance the fusion of causal features across 
different tasks. The technical details will be described in this section.  

 
Fig. 1. The overview of our proposed causality-informed fusion network. 

2.1 Pipeline 

The overview of the proposed scheme is illustrated in Fig. 1. In the preprocessing stage, 
three skeleton sequences will be obtained by OpenPose [15] from RGB videos of gait 
and leg-agility of both legs. Every skeleton sequence is defined by a feature matrix 𝒳 ∈
ℝ𝐶𝑖𝑛×𝑇𝑖𝑛×𝑉 and an adjacency matrix 𝒜 ∈ ℝ𝑉×𝑉  representing the physical connections 
of human body with self-connection, where 𝐶𝑖𝑛 is the number of channels, 𝑇𝑖𝑛 is the 
length of sequence and 𝑉 is the number of human joints.  

In the encoding stage, given the skeleton sequences, the feature maps 
𝐹𝐺𝐴, 𝐹𝐿𝐴𝑙

, 𝐹𝐿𝐴𝑟
∈ ℝ𝐶×𝑇×𝑉 are then extracted by three independent GCN encoders 𝐸 =

{𝐸𝐺𝐴 , 𝐸𝐿𝐴𝑙
, 𝐸𝐿𝐴𝑟

} respectively, where 𝐶, 𝑇 and 𝑉 represent channel, temporal and joint 
dimension. The update rule of the 𝑙-th layer in GCN can be described as: 

𝑍(𝑙+1) = 𝜎(𝐷−1𝒜𝑋(𝑙)𝑊(𝑙)), (1) 

where 𝑍(𝑙+1) ∈ ℝ𝐶(𝑙+1)×𝑇×𝑉  represents the output feature matrix of the current layer, 
𝐷 ∈ ℝ𝑉×𝑉  is the degree matrix of 𝒜  for normalization [16], and 𝑊(𝑙)  denotes the 
learnable weights of this layer. In the meanwhile, to learn the spatiotemporal infor-
mation of each task and speed up the model convergence, we perform multi-class clas-
sification loss ℒ𝑐𝑙𝑠 for each task to supervise the learning of GCN encoders: 
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ℒ𝑐𝑙𝑠 = ∑ ℓ(  𝑡(𝐺𝐴𝑃(𝐹𝑡), 𝑦𝑡)
𝑡∈𝑇

, (2) 

where 𝑇 denotes the set of motor examination tasks, i.e. 𝑇 = {𝐺𝐴, 𝐿𝐴𝑙 , 𝐿𝐴𝑟},   𝑡 , 𝑦𝑡  
is the classifier and label for the corresponding task, GAP means global average pool-
ing, ℓ represents cross-entropy loss function.  
 In the fusion stage, the feature maps of left and right leg-agility are firstly element-
wise summed to obtain 𝐹𝐿𝐴 ∈ ℝ𝐶×𝑇×𝑉 representing features of both legs. Afterwards, 
𝐹𝐺𝐴 and 𝐹𝐿𝐴 are fed into the adaptive causal feature selection module, where causal fea-
tures are separated from non-causal features. Finally, causal and non-causal features 
are concatenated separately. Classification loss of fused causal features ℒ𝑐−  𝑠  and 
fused non-causal features ℒ𝑛𝑐−  𝑠  are obtained by two classifiers   𝑐 and   𝑛𝑐.   

2.2 Adaptive Causal Feature Selection Module 

An adaptive causal feature selection module is designed to extract discriminative causal 
features for fusion. The entire process can be divided into three steps: feature decou-
pling, contribution learning, and causality-driven feature sampling.  

 
Fig. 2. Illustration of contribution learning and causal feature sampling. 

Feature Decoupling: To better distinguish between causal and non-causal components 
at the channel dimension, each feature channel should be jointly independent, i.e. there 
is minimal information overlap between different channels [17]. Therefore, we employ 
a feature decoupling loss to obtain independent channels. We illustrate the details using 
the gait branch as an example, and the same loss is also applied to the leg-agility branch. 

For motion features 𝐹𝐺𝐴 ∈ ℝ𝐶×𝑇×𝑉, information across frames and joints is aggre-
gated by global average pooling, followed by z-score normalization in the batch dimen-
sion to get feature matrix 𝓡𝐺𝐴 = [ 1,  2, ⋯ ,  𝑁]𝑇 ∈ ℝ𝑁×𝐶 , where 𝑁 is the batch size, 
 𝑖 ∈ ℝ𝐶×1 is the feature of the  -th sample. We construct channel correlation matrix 𝓒: 

𝓒𝑖 =
  ̃𝑖 ,  ̃  

|| ̃𝑖|| ∙ || ̃ ||
,  , 𝑗 ∈ 1, 2, … , 𝐶, (3) 
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where  ̃𝑖 represents the  th column of 𝓡𝐺𝐴,   ∙   denotes the inner product operation. 
The non-diagonal elements of 𝓒 measure the correlation between different channels, 
thus they need to be minimized. The feature decoupling loss ℒ 𝐶 can be defined as: 

ℒ 𝐶
𝐺𝐴 =

1

2𝐶(𝐶 − 1)
||𝓒 − 𝑑 𝑎𝑔(𝓒)||𝐹

2 ,     ℒ 𝐶 = ℒ 𝐶
𝐺𝐴 + ℒ 𝐶

𝐿𝐴 ,   (4) 

where 𝑑 𝑎𝑔(∙) constructs a diagonal matrix containing only the principal diagonal ele-
ments of the input matrix, ||  ∙  || denotes Frobenius norm. The overall decoupling loss 
is the sum of gait branch decoupling loss and leg-agility branch decoupling loss. 

Contribution Learning Module: To identify which feature channels are causal, we 
propose a contribution learning module 𝒢 to obtain the contribution of each channel. 
Two contribution learning modules 𝒢 = {𝒢𝐺𝐴, 𝒢𝐿𝐴} with the same structure but inde-
pendent parameters are utilized for gait and leg-agility branch, respectively. Here we 
introduce this module using gait branch as an example. The process of contribution 
learning and causal feature sampling is illustrated in Fig. 2. 

Firstly, a multi-layer perceptron (MLP) network denoted as 𝑤  is utilized to learn the 
contribution of each channel based on its motion features: 

  = 𝑠𝑜𝑓𝑡 𝑎𝑥 (𝑤 (𝐺𝐴𝑃(𝐹𝐺𝐴))) ∈ ℝ𝐶 . (5) 

Additionally, body bradykinesia can result in some similar movement abnormalities 
when patients perform gait and leg-agility tasks [18]. These features are also beneficial 
for body bradykinesia assessment. The motion feature for gait 𝐹𝐺𝐴 and leg agility 𝐹𝐿𝐴 
are aggregated over the time dimension using different linear layers, resulting in fea-
tures representing each body joint  𝑓𝐺𝐴

𝑉 , 𝑓𝐿𝐴𝑉 ∈ ℝ𝑉×𝐶. Since the arrangement of joints for 
both tasks is the same, similarity matrix   is defined as: 

𝑄 = 𝑓𝐺𝐴
𝑉 𝑊1,   𝐾 = 𝑓𝐿𝐴

𝑉 𝑊2,    = 𝑆𝑜𝑓𝑡 𝑎𝑥 (
𝑄𝑇𝐾

√𝐶
) ∈ ℝ𝐶×𝐶  , (6) 

where √𝐶 is a scaling factor, 𝑊1 and 𝑊2 denote linear layers.  𝑖  represents the simi-
larity between the  -th channel of gait and the 𝑗-th channel of leg-agility. Therefore, the 
maximum value of each row also serves as a measure of contribution of different chan-
nels. The contribution of all channels of gait features is the summation of    and  𝑠. 

 𝑠 =  𝑎𝑥( 𝑖,∶) ∈ ℝ𝐶 ,     𝒢𝐺𝐴(𝐹𝐺𝐴) =   +  𝑠 ∈ ℝ𝐶 .  (7) 

Causality-Driven Feature Sampling: During training, the derivable Gumbel-Softmax 
algorithm [19] is employed to sample 𝑘𝑡 one-hot vectors based on the contribution val-
ues. Channels selected are considered as causal ones. The maskers for sampling are 
defined as: 

ℳ𝐺𝐴 =  𝑎𝑥 {Gumbel − Softmax(𝒢𝐺𝐴(𝐹𝐺𝐴), 𝑘𝑡)} ∈ ℝ𝐶  

        ℳ𝐿𝐴 =  𝑎𝑥 {Gumbel − Softmax(𝒢𝐿𝐴(𝐹𝐹𝐴), 𝑘𝑡)} ∈ ℝ𝐶 , (8)
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where  𝑎𝑥  denotes element-wise maximum operation. Finally, the fusion classifica-
tion losses for causal and non-causal features are represented as: 

ℒ𝑐−  𝑠 = ℓ(  𝑐((𝑓𝐺𝐴
𝐶 ⨀ℳ𝐺𝐴)⨁(𝑓𝐿𝐴

𝐶 ⨀ℳ𝐿𝐴)), 𝑦)

 ℒ𝑛𝑐−  𝑠 = ℓ(  𝑛𝑐((𝑓𝐺𝐴
𝐶 ⨀(1 − ℳ𝐺𝐴))⨁(𝑓𝐿𝐴

𝐶 ⨀(1 − ℳ𝐿𝐴))), 𝑦), (9)
 

where 𝑓𝐺𝐴
𝐶 = 𝐺𝐴𝑃2 (𝐹𝐺𝐴) ∈ ℝ𝐶, 𝑓𝐿𝐴𝐶 = 𝐺𝐴𝑃2 (𝐹𝐿𝐴) ∈ ℝ𝐶 , ⨀ represents element-wise 

multiplication, ⨁ denotes concatenation operation,   𝑐 and   𝑛𝑐 are MLP-based classifi-
ers with independent parameters.   

2.3 Causality-informed Optimization Strategy 

To better extract causal features, a causality-informed optimization strategy is designed 
by dividing each epoch into two stages. In the first stage, we fix the parameters of con-
tribution learning modules 𝒢 and optimize the encoders 𝐸 and classifiers   𝑐 ,   𝑛𝑐  by 
minimizing ℒ𝑐𝑙𝑠, ℒ 𝐶 and two fusion losses ℒ𝑐−  𝑠 , ℒ𝑛𝑐−  𝑠 . In the second stage, we 
fix the parameters of encoders and classifiers and optimize the contribution learning 
modules 𝒢 by minimizing causal fusion loss ℒ𝑐−  𝑠  while maximizing non-causal fu-
sion loss ℒ𝑛𝑐−  𝑠 . This iterative strategy can enhance the capacity of the causal feature 
selection module because 1) with an optimized   𝑛𝑐 to minimize ℒ𝑛𝑐−  𝑠  based on cur-
rent maskers, optimizing 𝒢 to select channels for maximizing ℒ𝑛𝑐−  𝑠  can find chan-
nels with less contribution; 2) since causal channels and non-causal channels are com-
plementary, better selection of non-causal channels will be beneficial for causal channel 
extraction, and 3) the objective of 𝒢 is opposite to that of 𝐸 and   , therefore the ability 
to extract causal channels will increase synchronously with the optimization of 𝐸 and 
  . The overall optimization objective can be summarized as: 

  min
𝐸,ℎ̂𝑐,ℎ̂𝑛𝑐, ℎ̂𝑡

ℒ𝑐−  𝑠 +  ℒ𝑛𝑐−  𝑠 + 𝜆1 ℒ𝑐𝑙𝑠 + 𝜆2ℒ 𝐶 ,    min
𝒢

ℒ𝑐−  𝑠 −  ℒ𝑛𝑐−  𝑠  ,  (10) 

where 𝜆1 and 𝜆2 are hyperparameters for balancing various loss items. During infer-
ence, we directly select the top 𝑘  channels with the highest contribution values from 
𝒢𝐺𝐴(𝐹𝐺𝐴) and 𝒢𝐿𝐴(𝐹𝐿𝐴) as causal features for fusion, and   𝑐 is used for classification. 

3 Experiments 

3.1 Datasets 

The video dataset utilized in our study was compiled by Department of Functional Neu-
rosurgery at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine in 
China between 2017 and 2020. During the data acquisition process, a consumer camera 
was positioned in front of the patients, who were instructed to perform gait and leg-
agility tasks for both left and right legs. The gait, leg-agility and bradykinesia were 
scored by experienced neurosurgeons. According to the MDS-UPDRS scores for body 
bradykinesia, patients with a score 0 indicating no bradykinesia were found to be rare, 
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while those with a score 4 faced challenges in completing gait and leg-agility tasks. 
Therefore, aligning with clinical requisites, we classified body bradykinesia into three 
categories: mild bradykinesia (≤1), moderate bradykinesia (2) and severe bradykinesia 
(≥3). Totally 876 sets of videos from 293 patients were collected, comprising 297 
cases of mild bradykinesia, 346 cases of moderate bradykinesia and 233 cases of severe 
bradykinesia.  

3.2 Implementation Details 

In our experiments, the training epochs was set to 70. The initial learning rate was set 
to 0.005 and decays with a cosine scheduler. For the first 5 epochs, we did not utilize 
ℳ𝐺𝐴 and ℳ𝐿𝐴 to extract causal features, i.e. all features were directly concatenated and 
fed into   𝑐 and   𝑛𝑐. 𝜆1 and 𝜆2 in Eq. (10) were experimentally set to 2 and 0.01, re-
spectively. The proportion of causal channels was set as 𝑘𝑡 = 𝐶/2, 𝑘 = 𝐶/3. The 
batch size was set to 32, and the stochastic gradient descent strategy was employed to 
tune the parameters. EfficientGCN [20] was utilized as the encoders 𝐸. We employ 
five-fold cross-validation to evaluate the performance, and accuracy, macro average 
precision, recall and F1-score are used as the evaluation metrics for classification. 

3.3 Assessment Performance 

The performance and confusion matrix of our proposed method is illustrated in Table 
1 and Fig. 3 (a). Compared to recent studies [4, 21], this work tackles a more challeng-
ing task due to the absence of specific examination actions. As a pioneering attempt to 
utilize multimodal video information for indirect assessment of body bradykinesia, the 
proposed method achieved satisfactory performance in PD body bradykinesia assess-
ment and demonstrated balanced performance across all categories.  

 
Fig. 3. (a) Confusion matrix under cross-validation; (b) repeated experimental results of the 

baseline, ablation methods and the proposed method. 

3.4 Ablation Studies 

The comparison results of the proposed method with baseline and ablation methods are 
summarized in Table 2 and Fig. 3 (b). We took the direct concatenation of gait and leg-
agility features as the baseline. To assess the impact of the proposed optimization 
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strategy, we optimized all components using a unified objective aimed at minimize 
ℒ𝑐−  𝑠 , which is denoted as “w/o CIOS”. The results indicate that the absence of the 
optimization strategy leads to a significant decrease in the ability to extract causal chan-
nels. Additionally, we conducted ablation experiments on the two sub-components    
and  𝑠  of the contribution learning module 𝒢, confirming that including both parts 
yields the optimal performance. 

Table 1. Performance of the proposed method. 

Body-bradykinesia grading Acc (%) Prec (%) Rec (%) F1 (%) 
Mild (1-) 63.64 63.64 63.64 63.64 

Moderate (2) 57.23 53.80 57.23 55.46 
Severe (3+) 63.52 70.14 63.52 66.67 

Total 61.07 62.53 61.46 61.99 

Table 2. Comparison results with baseline and ablation methods (CIFN: causality-informed fu-
sion network; CIOS: causality-informed optimization strategy). 

Methods Acc (%) Prec (%) Rec (%) F1 (%) 
Baseline 57.62±0.48 59.42±1.32 58.24±0.59 58.81±0.69 

CIFN ( 𝑠 only) 60.14±0.59 61.16±0.25 61.00±0.71 61.08±0.29 
CIFN (   only) 60.21±0.55 61.23±0.34 61.40±0.83 61.32±0.42 

CIFN (w / o CIOS) 57.38±0.96 58.54±0.45 58.62±0.47 58.58±0.45 
CIFN (Ours) 60.95±0.43 62.32±0.68 61.76±0.29 62.04±0.47 

Table 3. Stability analysis with various encoders (Vanilla fusion: all features are directly con-
catenated for fusion; CI: Causality-Informed). 

Encoder structure Fusion mode Acc (%) Prec (%) Rec (%) F1 (%) 

ST-GCN [11] 
Vanilla fusion 57.08±0.51 58.28±0.48 57.72±0.86 58.00±0.56 

CI fusion 60.84±0.62 62.14±0.74 61.36±0.74 61.74±0.66 

2s-AGCN [22] 
Vanilla fusion 59.80±0.49 60.83±0.98 60.64±0.70 60.73±0.52 

CI fusion 60.90±0.76 62.44±0.59 61.40±0.94 61.91±0.72 

MS-G3D [23] 
Vanilla fusion 60.24±0.65 61.66±0.83 60.86±0.84 61.25±0.69 

CI fusion 61.62±0.57 63.14±0.80 62.08±0.75 62.60±0.58 
EfficientGCN 

[20] 
Vanilla fusion 57.62±0.48 59.42±1.32 58.24±0.59 58.81±0.69 

CI fusion 60.95±0.43 62.32±0.68 61.76±0.29 62.04±0.47 

3.5 Stability analysis 

To further validate the stability of our proposed causality-informed fusion scheme, we 
conducted additional experiments with several state-of-the-art GCN encoders including 
ST-GCN [11], 2s-AGCN [22] and MS-G3D [23]. The results are summarized in Table 
3, with all experiments randomly repeated for five times. The results indicate that 1) 
our proposed causality-informed (CI) fusion scheme outperforms vanilla fusion scheme 
without causality guidance under the same encoder architecture (p-values < 0.05 in t-
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test), demonstrating an enhancement in performance, and 2) under the CI fusion 
scheme, there is no statistically significant difference (p-values > 0.05 in t-test) in per-
formance among these four encoder architectures. This observation underscores the ro-
bustness of our proposed fusion scheme to encoder architecture variations, effectively 
enhancing the stability of feature fusion. Even though MS-G3D with CI fusion achieved 
better performance, EfficientGCN is selected as the backbone in this study due to its 
advantages in deployability (1/9 FLOPs compared to 2s-AGCN and 1/12 FLOPs com-
pared to MS-G3D). 

4 Conclusion 

The automated assessment of body bradykinesia is crucial for PD diagnosis and treat-
ment. In this study, we develop a video-based assessment scheme for body bradykine-
sia, which only requires consumer-level cameras. Technically, we design a novel cau-
sality-informed fusion network to enhance the fusion of causal features while mitigat-
ing non-causal components. Our proposed scheme presents a powerful tool for PD 
bradykinesia assessment, demonstrating immense potential for widespread applica-
tions. 
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