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Abstract. Polyp segmentation plays a pivotal role in colorectal can-
cer diagnosis. Recently, the emergence of the Segment Anything Model
(SAM) has introduced unprecedented potential for polyp segmentation,
leveraging its powerful pre-training capability on large-scale datasets.
However, due to the domain gap between natural and endoscopy im-
ages, SAM encounters two limitations in achieving effective performance
in polyp segmentation. Firstly, its Transformer-based structure priori-
tizes global and low-frequency information, potentially overlooking local
details, and introducing bias into the learned features. Secondly, when
applied to endoscopy images, its poor out-of-distribution (OOD) per-
formance results in substandard predictions and biased confidence out-
put. To tackle these challenges, we introduce a novel approach named
Augmented SAM for Polyp Segmentation (ASPS), equipped with two
modules: Cross-branch Feature Augmentation (CFA) and Uncertainty-
guided Prediction Regularization (UPR). CFA integrates a trainable
CNN encoder branch with a frozen ViT encoder, enabling the integra-
tion of domain-specific knowledge while enhancing local features and
high-frequency details. Moreover, UPR ingeniously leverages SAM’s IoU
score to mitigate uncertainty during the training procedure, thereby im-
proving OOD performance and domain generalization. Extensive exper-
imental results demonstrate the effectiveness and utility of the proposed
method in improving SAM’s performance in polyp segmentation. Our
code is available at https://github.com/HuiqianLi/ASPS.

Keywords: Polyp Segmentation · Segment Anything Model · Domain
Adaptation.

1 Introduction

Automated polyp segmentation stands as a pivotal tool in the diagnosis of col-
orectal cancer, to aid effective interventions and timely treatment strategies.

https://github.com/HuiqianLi/ASPS
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Studies like Polyp-PVT[5], SSFormer[22] used Pyramid Vision Transformer for
polyp segmentation; CFANet[35] integrated boundaries with a Cross-level Fea-
ture Aggregation Network; Endo-FM[23] captured spatial-temporal dependen-
cies to build a foundation model. However, limited by the model’s size, the
existing methods still lack sufficient capabilities for feature representation and
extraction, making it challenging to fully capture the morphology and charac-
teristics of polyps. Furthermore, the limited scale of the dataset may limit the
diversity and generalization of the existed methods. Recently, the Segment Any-
thing Model[12] (SAM) was introduced. SAM is pre-trained on the largest seg-
mentation dataset SA-1B, demonstrating remarkable segmentation capabilities
across various downstream tasks. With its significant model size and data size,
this innovative approach has introduced novel perspectives to the field of polyp
segmentation. It also possesses enhanced representation and feature extraction
capabilities, surpassing existing methods.

However, SAM’s performance in the polyp segmentation task is unsatisfac-
tory [34], due to the domain gap between the training data and endoscopy im-
ages. This results in two primary issues: firstly, SAM fails to adequately capture
the distinctive features of polyp images, leading to a bias in its learned rep-
resentations. Secondly, it produces erroneous predictions with inaccurate con-
fidence estimates for out-of-distribution (OOD) data. In addition, because it
relied on prompts, SAM has significantly impeded its convenience in clinical
applications. Despite several methods improving SAM, such as MedSAM[15],
these approaches either rely on prompts or directly fine-tune substantial mod-
els. SAMUS[14] effectively integrates CNN and ViT, but its design is quite com-
plex and is particularly suited for processing small images. Consequently, the
efficacy of these methods is somewhat constrained. Various methods have been
proposed to tackle the challenge of unsupervised domain adaptation in semantic
segmentation. MIC[8] proposed a Masked Image Consistency module for tar-
get domain context learning; Context-Aware Domain Adaptation[26] improved
context transfer via cross-attention. Yet, domain-specific information integration
and uncertainty reduction are still unexplored.

To address these issues, we introduce a novel method based on SAM from a
domain adaptation perspective, designed to augment the feature extraction ca-
pability and generalization without relying on prompts. We propose the Cross-
branch Feature Augmentation Module (CFA) and the Uncertainty-guided Pre-
diction Regularization Module (UPR). CFA incorporates an additional trainable
convolutional neural network (CNN) encoder branch, which complements the
frozen vision transformer (ViT) encoder, to capture multi-scale and multi-level
features. UPR adjusts the normalization layer to promote the adaptation in the
endoscopy field and leverages hints to ensure accurate confidence estimation, so
as to improve the OOD performance of SAM.

In summary, our primary contributions are as follows: (1) We build a novel
SAM-based model named ASPS, to enhance the feature learning capability
and domain generalization for polyp segmentation, demonstrating strong per-
formance without the need for prompts. (2) We introduce the Cross-branch
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Fig. 1: An overview of our Augmented Segment Anything Model for polyp
segmentation. The Cross-branch Feature Augmentation module is encouraged
to learn multi-scale features and multi-level representations. The Uncertainty-
guided Prediction Regularization module is designed to minimize the uncertainty
of the prediction to improve the domain generalization ability of the model.

Feature Augmentation Module (CFA), which introduces an additional CNN en-
coder branch as a supplement to the ViT encoder. Furthermore, we propose the
Uncertainty-guided Prediction Regularization Module (UPR), leveraging hints
to reduce uncertainty during training and improve the domain generalization of
SAM. (3) Extensive experiments on five common polyp datasets demonstrate
the effectiveness and superiority of our method.

2 Method

Overview. Our proposed network is illustrated in Fig. 1. To address the do-
main degradation issue of SAM, we leverage two modules to enhance its origi-
nal feature extraction capabilities and domain generalization. The CFA module
integrates the CNN encoder feature with global ViT information, leading to
generalized feature representation learning. This integration facilitates refined
segmentation outputs by aggregating deep information to the superficial layers
and incorporating positional information from the shallow levels. Meanwhile, the
UPR module is designed to minimize uncertainty and calibrate confidence dur-
ing training. UPR utilizes a training strategy based on uncertainty, leveraging
the ground truth as a guiding ‘hint’. The proposed network follows end-to-end
training without prompts, jointly optimizing two modules to achieve optimal
performance.

2.1 Cross-branch Feature Augmentation Module

While SAM has achieved great success in many image segmentation tasks, it still
has some limitations in the polyp segmentation task. One of the main reasons is
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Fig. 2: Detailed architecture of ViT Encoder and Mask Decoder. (a) represents
the ViT encoder, while (b) showcases the lightweight decoder of SAM. The
CNN feature is derived from the output of the CNN encoder. The yellow and
blue modules represent the original SAM structure.

that the image encoder of SAM is not able to capture enough features effectively
from unseen endoscopy images. To address this issue, the CFA module is designed
to learn multi-scale features and multi-level representations, thereby enhancing
the feature extraction capabilities of the encoder.

Firstly, to achieve automatic segmentation, we modified the architecture of
SAM by removing its prompt input and prompt encoder components while
preserving its image encoder and mask decoder parts. Recent studies[17] have
demonstrated that ViT is more focused on low-frequency signals, while CNN is
more adept at processing high-frequency signals. Hence, we integrate a parallel
CNN-based branch to compensate for the absence of high-frequency and local
features. Furthermore, we augment the mask decoder of SAM by proposing an
additional multi-head cross-branch attention block to facilitate the integration
of features extracted from both the ViT encoder and the CNN encoder. For
the features Fv from the ViT branch and Fc from the CNN, the cross-branch
attention can be formulated as follows:

CrossBranchAttention (Fv,Fc) = Softmax

(
QKT

√
d

)
V. (1)

where Q = FvW
Q, K = V = FcW

K, and d is the number of channels of
each head of Fv. Considering that CNN features offer more precise position
information, we substituted SAM’s original position embedding in the mask
decoder with the final output features from the CNN encoder. Furthermore, we
integrated the cross-branch attention mechanism into the attention block of the
mask decoder, repeating this process twice to ensure integration of multi-scale
features from both the ViT and CNN encoders, as shown in Fig. 2.

Secondly, to obtain more precise segmentation results, we integrate high-
level context and low-level boundary information from the encoder with the
decoder features of SAM to augment the output information. Specifically, we
combine the shallow local features obtained from the intermediate embedding of
the ViT encoder, the final global features obtained from the image embedding
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of the ViT encoder, and the final features of the CNN encoder, as illustrated in
Fig. 2. This approach fully harnesses the rich edge information, extensive global
context information, and local position details of each encoder branch. Thus, we
can effectively integrate multi-level features from both ViT and CNN.

2.2 Uncertainty-guided Prediction Regularization Module

To augment the generalization capability of SAM, we propose a novel training
strategy involving the selective activation of LayerNorm within the encoder. We
also employ the ground truth as a ‘hint’ to further guide the training process by
correcting the confidence.

Given that SAM is trained on natural data, its performance may deteriorate
in polyp images due to the domain transfer. As previously suggested [13], it is
a particularly effective technique for domain transfer by adjusting the normal-
ization layer. Despite the introduction of LayerNorm [1] potentially reducing
training time, it fundamentally alters the distribution of the input data. When
transferring SAM from natural images to endoscopy images, there is a shift in
both the data distribution and the corresponding feature space distribution.
These distributional differences can induce internal covariate shifts, thereby in-
fluencing the model’s performance. To improve the SAM’s generalization in the
endoscopy field, we fine-tune the normalization layer of the encoder. In this pro-
cess, the model effectively adapts the data distribution in the target domain and
mitigates the effects of internal covariate shifts.

Specifically, the LayerNorm of SAM’s ViT encoder is divided into (1) Trans-
former block norm, and (2) neck layer norm, as illustrated in Fig. 2(a). Given
that the features in the neck layer are closer to the output features of the encoder,
we ultimately decided to train the neck layer normalization, which is equivalent
to re-normalizing the features of the pre-trained ViT encoder. Coincidentally,
in this work[32], the straightforward technique of adjusting normalization layers
can surprisingly yield comparable or even superior performance to the robust
baseline of fine-tuning all parameters.

Moreover, previous research[16] has demonstrated that predictions with lower
uncertainty tend to exhibit superior out-of-distribution (OOD) performance,
which is also beneficial for domain adaptation. SAM generates an IoU score
output, which inherently can represent uncertainty (or, conversely, confidence).
However, during the prediction process, SAM may frequently produce incorrect
predictions for unseen data with high confidence, which is undesirable. To miti-
gate this problem, we strive to reduce the uncertainty of the model during train-
ing (i.e., to increase confidence). Inspired by [4], we utilize the ground truth as a
hint to guide the learning of the model. First, we represent the IoU score of SAM
as the image-level confidence ci. Then we calculate the pixel-level confidence cp
to refine the uncertainty of each pixel using Eq. 2, where Up ∈ RB×1×H×W .

cp =

1− 1

H ×W

H∑
i

W∑
j

Up

 . (2)
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The term Up represents the pixel uncertainty, defined as Up = 1 − σ(|P|).
Here, σ represents the Sigmoid function, while P represents the output predic-
tion. The final confidence is calculated as the sum of the image-level confidence
and the pixel-level confidence, expressed as c = 1

2 (ci + cp). This confidence is
determined by the Bernoulli distribution, which decides whether to utilize the
ground truth as a hint. In other words, if the confidence is low enough, we be-
lieve that the model requires a specific answer hint to learn the correct mask
prediction. Thus, the answer is required as a hint, otherwise, it is not necessary.
The weight of the hint is determined by the confidence c, which is expressed as
follows:

P′ = c ·P+ (1 − c) ·Y. (3)

However, by minimizing the loss function, the model will tend to make c = 0
so that P′ will always be GT. This means that the model does not actually learn.
Therefore, a confidence loss is introduced to supervise c, which will increase when
c → 0, and the confidence loss is defined as follows:

Lc = −log(c). (4)

The final loss function is the sum of the segmentation loss Ls and the confi-
dence loss Lc, as defined in Eq. 5. Here, λ represents a hyperparameter. Specifi-
cally, the segmentation loss employed is a combination of CE loss, Dice loss, and
MSE loss as Ls = Lce + 0.5 · Ldice + Lmse.

L = Ls + λLc. (5)

3 Experiments

Datasets. We conduct extensive experiments on five polyp segmentation datasets
following PraNet[6], including Kvasir-SEG[10], CVC-ClinicDB[2], CVC-ColonDB[20],
ETIS[19] and EndoScene[21]. Specifically, the training set consists of 900 images
from Kvasir-SEG and 550 images from ClinicDB. The test sets comprise 100
images from Kvasir-SEG, 62 images from CVC-ClincDB, 380 images from CVC-
ColonDB, 60 images from EndoScene, and 196 images from ETIS.

Implementations. We use PyTorch to implement our method and conduct
experiments on a single NVIDIA RTX3090 GPU. The AdamW optimizer is uti-
lized for training 16K iterations with a learning rate of 1e-5, a weight decay of
1e-4, and a batch size of 4. The CNN model we utilize is MSCAN-L, sourced
from SegNeXt[7]. The input image size for the ViT branch is 1024× 1024, while
the input size for the CNN branch is 320× 320. In the evaluation stage, we use
two common metrics in medical image segmentation, Dice and IoU.

Results and Analysis. We compare our method with several state-of-the-art
polyp segmentation methods and some SAM-based methods in Table 1. It is ev-
ident that while the performance enhancement on Kvasir and CVC-ColonDB is
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Table 1: Quantitative comparisons with state-of-the-art (SOTA) methods on five
public polyps datasets are presented. We mark the best results with bold and
the second-best scores with underline.

Methods Published
Venue

CVC-ClinicDB Kvasir CVC-ColonDB ETIS EndoScene
Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

UNet[18] MICCAI’15 0.823 0.755 0.818 0.746 0.504 0.436 0.398 0.335 0.710 0.627
PraNet[6] MICCAI’19 0.899 0.849 0.898 0.840 0.709 0.640 0.628 0.567 0.871 0.797
SANet[24] MICCAI’21 0.916 0.859 0.904 0.847 0.752 0.669 0.750 0.654 0.888 0.815
MSNet[33] MICCAI’21 0.915 0.866 0.902 0.847 0.747 0.668 0.720 0.650 0.862 0.796

UACANet[11] MM’21 0.916 0.870 0.905 0.852 0.783 0.704 0.694 0.615 0.902 0.837
LDNet[31] MICCAI’22 0.932 0.872 0.912 0.855 0.794 0.715 0.778 0.707 0.893 0.826

SSFormer[22] MICCAI’22 0.906 0.855 0.917 0.864 0.802 0.721 0.796 0.720 0.895 0.827
DCRNet[27] ISBI’22 0.869 0.800 0.846 0.772 0.661 0.576 0.509 0.432 0.753 0.670

Polyp-PVT[5] AIR’23 0.937 0.889 0.917 0.864 0.808 0.727 0.787 0.706 0.900 0.833
CFANet[35] PR’23 0.933 0.883 0.915 0.861 0.743 0.665 0.732 0.655 0.893 0.827

SAM-H[12] ICCV’23 0.547 0.500 0.778 0.707 0.441 0.396 0.517 0.477 0.651 0.606
SAM-L[12] ICCV’23 0.579 0.526 0.782 0.710 0.468 0.422 0.551 0.507 0.726 0.676

SAM-Adapter[3] ICCV’23 0.774 0.673 0.847 0.763 0.671 0.568 0.590 0.476 0.815 0.725
AutoSAM[9] ArXiv’23 0.751 0.642 0.784 0.675 0.535 0.418 0.402 0.308 0.829 0.739
SAMPath[29] MICCAIw’23 0.750 0.644 0.828 0.730 0.632 0.516 0.555 0.442 0.844 0.756
SAMed[30] ArXiv’23 0.404 0.273 0.459 0.300 0.199 0.115 0.212 0.126 0.332 0.202
SAMUS[14] ArXiv’23 0.900 0.821 0.859 0.763 0.731 0.597 0.750 0.618 0.859 0.760

SurgicalSAM[28] AAAI’24 0.644 0.505 0.740 0.597 0.460 0.330 0.342 0.238 0.623 0.472
MedSAM[15] Nature’24 0.867 0.803 0.862 0.795 0.734 0.651 0.687 0.604 0.870 0.798

Ours Efficient-SAM[25] 0.942 0.891 0.914 0.849 0.782 0.680 0.854 0.758 0.900 0.819
Ours ViT-B 0.950 0.905 0.914 0.848 0.792 0.694 0.856 0.764 0.914 0.843
Ours ViT-H 0.951 0.906 0.920 0.858 0.799 0.701 0.861 0.769 0.919 0.852

not particularly noticeable, the improvement on CVC-ClinicDB, ETIS, and En-
doScene is quite significant. Especially, Polyp-PVT[5] showed good performance
on all datasets with average Dice and IoU of 0.870 and 0.804, respectively, while
our method achieved 0.890 and 0.817, which proves the effectiveness of our model.

Compared to SAM-based (ViT-B) methods, our approach outperformed all
others across all datasets. It’s important to note that methods like MedSAM[15]
and SAMUS[14] still incorporated prompts like SAM, but we removed prompts
in the comparative experiment. Besides, despite our efforts, we didn’t attain
satisfactory results with SurgicalSAM[28] and SAMed[30], potentially due to
incompatible training hyperparameters. Moreover, we observed that SAMUS[14]
also utilized a CNN auxiliary branch and achieved excellent results, respectively,
further validating the effectiveness of the CNN branch. Additionally, with the
development of the lightweight model of SAM, we successfully combined our
method with EfficientSAM[25] and achieved satisfactory results.

In Fig. 3, we use Fourier analysis as a toolkit to show the difference between
features from two encoders. The Fourier spectrum and relative log amplitudes
of the Fourier transformed feature maps indicate that the CNN branch cap-
tures more high-frequency signals than the ViT baseline. We also provide the
qualitative results in Fig. 4, where our predictions are closer to the ground truth.
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Table 2: Ablation experiments on five public polyp datasets.
CVC-ClinicDB Kvasir CVC-ColonDB ETIS EndoScene

CFA UPR Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

0.537 0.388 0.652 0.469 0.397 0.268 0.387 0.265 0.525 0.368
✓ 0.913 0.843 0.887 0.819 0.775 0.684 0.811 0.708 0.901 0.831

✓ 0.558 0.407 0.672 0.519 0.415 0.282 0.382 0.360 0.610 0.453
✓ ✓ 0.950 0.905 0.914 0.848 0.792 0.694 0.856 0.764 0.914 0.843

Table 3: Ablation studies on EPA.
CFA UPRCVC-ClinicDB Kvasir

CA Fusion PE Dice IoU Dice IoU

✓ 0.558 0.407 0.672 0.519
✓ ✓ 0.838 0.737 0.866 0.772
✓ ✓ ✓ 0.941 0.891 0.911 0.848
✓ ✓ ✓ ✓ 0.950 0.905 0.914 0.848

Table 4: Ablation studies on UPR.
CFA UPR CVC-ClinicDB Kvasir

TN NN Hint Dice IoU Dice IoU

✓ 0.913 0.843 0.887 0.819
✓ ✓ 0.936 0.885 0.912 0.859
✓ ✓ 0.944 0.896 0.914 0.850
✓ ✓ ✓ 0.936 0.881 0.875 0.814
✓ ✓ ✓ 0.950 0.905 0.914 0.848

Ablation Study. We conducted ablation experiments to verify the effective-
ness of the proposed CFA and UPR. For our baseline, we use ViT-B as the
backbone of SAM and remove the prompt encoder. As shown in Table 2, we
are confident to assert that the contribution of each module to the overall per-
formance enhancement is significant, and their combination produces the best
overall performance.

To ensure the reliability of the CFA, we conducted ablation experiments on
the introduced cross-branch attention (CA), multi-level features fusion (Fusion),
and position embedding replacement (PE). As shown in Table 3, compared with
the baseline, our method achieved better performance and improved the mean
Dice score by 31.7% and the mean IoU score by 41.4%. In addition, we tried to
train (1) the Transformer block norm (TN), (2) the neck layer norm (NN), and
(3) both to validate the effectiveness of UPR. The results are shown in Table 4.
Due to the limitation of computing power, we set the batch size for experiments
involving TN to 2, while the others were set to 4. Currently, only training the
neck layer norm demonstrated superior performance.
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4 Conclusion

We introduce a novel method called ASPS for polyp segmentation, designed to
address the limitations of the SAM model in capturing information and bridging
the domain gap between endoscopy images. The CFA module incorporates a
trainable CNN encoder branch to supplement the frozen ViT encoder, integrat-
ing multi-scale and multi-level features. Additionally, the UPR module reduces
uncertainty during training by introducing hints and adjusting the normalization
layer, promoting the adaptation of the model in the endoscopy field. Through
experiments on five common polyp datasets, we verify the effectiveness and su-
periority of our method. To extend our work, our future direction focuses on
investigating more efficient methods using SAM, enabling us to fully harness the
foundation model for effective polyp segmentation.
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