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Abstract. The intervertebral disc (IVD) degeneration poses demanding
challenges for improved diagnosis and treatment personalization. Biome-
chanical simulations bridge the gap between phenotypes and functional
mechanobiology. However, personalized IVD modeling is hindered by
complex manual workflows to obtain meshes suitable for biomechanical
analysis using clinical MR data. This study proposes Pixel2Mechanics: a
novel pipeline for biomechanical finite element (FE) simulation of high-
resolution IVD meshes out of low-resolution clinical MRI. We use our
geometrical deep learning framework incorporating cross-level feature
fusion to generate meshes of the lumbar Annulus Fibrosus (AF) and
Nucleus Pulposus (NP) from the L1-L2 to L4-L5 IVD. Further, we im-
prove our framework by proposing a novel optimization method based on
differentiable rendering. Next, a custom morphing algorithm based on
the Bayesian Coherent Point Drift++ approach generates volumetric FE
meshes from the surface meshes, preserving tissue topology through the
whole cohort while capturing shape specificities. Daily load simulations
on these FE model simulations were evaluated in three volumes within
the IVD: the center of the NP and the two transition zones (posterior and
anterior) on mechanical responses. These were compared with the results
obtained with a manual segmentation procedure. This study delivers
a fully automated pipeline performing patient-personalized simulations
of L1-L2 to L4-L5 IVD spine levels from clinical MRIs. It facilitates
functional modeling and further exploration of normal and pathological
discs while minimizing manual intervention. These features position the
pipeline as a promising candidate for future clinical integration. Our data
& code will be made available at: Pixel2Mechanics
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1 Introduction

Low back pain is a widespread disorder affecting a significant proportion (60-80%)
of the global population at some point in their lives [20]. Magnetic Resonance
Imaging (MRI) has become the gold standard for diagnosing intervertebral disc
(IVD) degeneration (IDD). However, MRI scans are often acquired as multiple
thick slices at different orientations, leading to anisotropic voxels that limit
accurate 3D anatomical analysis and are unsuitable for biomechanical modeling
that relies on high-resolution 3D meshes of the anatomy [4].

In the literature, several studies report biomechanical modeling of the lumbar
region from medical imaging modalities. Chen et al. [3] developed a deep-learning
approach to segment the L4-L5 region of the lumbar spine. Recently, Kok et al. [8]
proposed a method to model the vertebra and the discs. They first trained a model
to generate Synthetic Computed Tomography (SCT) scans from isotropic MRI
volumes to segment the vertebra and another model to segment the IVDs from
these MRI volumes. However, the above studies involve high-resolution isotropic
MRIs that are not clinically easy to obtain and might not be ideal solutions
for further translation into accessible modeling tools. Cai et al. [1] developed
a method to study the biomechanical effects of the L4-L5 IVDs. However, the
model was built using a CT scan of a single patient, and the model was modified
to construct Finite Element (FE) models based on three variables: disc height,
formation of anterior osteophytes, and area of NP. Also, the evaluation was done
only for the L4-L5 region and not the entire lumbar spine region. Galbusera et al.
[6] presented techniques to segment, build FE meshes, and assess the mechanical
properties of tissues from imaging data. However, as mentioned above, manual
segmentations are time-consuming and delay biomechanical simulations.

FE models and simulations have already led to advanced insights in early IDD,
such as possible perturbations of indirect mechanotransduction phenomena when
mechanical loads and internal IVD mechanics alter the transport of nutrients
to NP cells [15]. However, assessing the variability of internal disc mechanics in
a patient-personalized (PP) IVD model way remains a challenge, mainly due
to the limitations of simplified geometries [10]. Addressing this, a recent study
has delved into morphology’s effects on mechanics through FE analysis [5]. Yet,
this research solely focused on the outer surface of the AF during the morphing
process and overlooks the IVD’s internal structure, such as the NP. On the other
hand, Muñoz-Moya et al. [12] addressed this problem by integrating all the IVD
tissues to consider the non-linear interactions between phenotypes and mechanics.

Our study introduces Pixel2Mechanics, a pipeline that combines high-resolution
IVD reconstruction from clinical MRI [13], and our morphing algorithm [12]
to create customized computer simulations of the IVD, considering both AF
and NP. Unlike traditional methods, our pipeline generates these simulations
using only anisotropic MRI data as input. It precisely adapts a tissue-structured
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generic FE mesh to the unique anatomical details of the patient’s IVD, ensuring
tailored simulations. To verify the accuracy of these personalized simulations, we
compare them with simulations achieved with models from manual segmentations,
confirming their accuracy and effectiveness. In this paper, we tackle the above
limitations and summarize our contributions below:

– We propose Pixel2Mechanics, a deep learning-based pipeline to reconstruct
AF and NP meshes of the L1-L2 to L4-L5 IVDs and perform FE simulations

– We propose a novel differentiable rendering-based optimization to reconstruct
AF and NP meshes from clinical MRIs using graph neural networks

– The reconstructed AF and NP meshes are used to generate PP models for
FE simulations to evaluate the variability of internal mechanical responses,
including inter-personal variability.

2 Methods

The Pixel2Mechanics pipeline, illustrated in Figure 1 (A), begins with the 3D
high-resolution mesh reconstruction from anisotropic MRI using [13]. This is
followed by morphing via our algorithm and concludes with FE simulations
in Abaqus 2020, employing the Sub_disc.f, a User MATerial (UMAT) Fortran
subroutine entirely explained in the work [12].

2.1 MRI2Mesh

Image Encoder: To capture PP features from the input MRI volume, we employ
a 3D-ResNet50 encoder. It takes a T2-w sagittal sequence as input and extracts
patient-level features associated with the discs. The architecture comprises a series
of interconnected blocks, each incorporating convolutional, batch normalization,
and rectified linear unit (ReLU) layers interspersed with residual connections.
The output is a feature vector encoding the PP disc characteristics.

Mesh Deformation: The subsequent component in our architecture com-
prises graph convolutional neural networks (GCNs). The GCNs receive a template
mesh representing an IVD and its associated vertex attributes. The vertex at-
tributes are extracted from the encoder’s output using perceptual feature pooling.
Our network encompasses three stages of mesh deformation. Each stage undergoes
three sequential graph convolutional layers, generating per-vertex offsets relative
to the previously deformed mesh reconstruction step.

Cross-level Feature Fusion: Our architecture employs Cross-level Feature
Fusion blocks to incorporate local shape features while simultaneously harnessing
the global context from optimizing other IVDs. These blocks are strategically
positioned after each mesh deformation stage to capture shape-level information
effectively. The feature fusion blocks leverage a hybrid approach incorporating
convolutional and transformer-based operations. The convolution operations learn
the local semantics, while the attention mechanism learns the global context.
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Fig. 1. Pixel2Mechanics framework: The pipeline starts with extracting high-resolution
surface meshes of IVDs from anisotropic T2-w sagittal MRI, and later, they are morphed
into the generic FE mesh [16] using BCPD++. The process ends by performing the
simulation in Abaqus and considering mechanical and indirect mechanotransduction
variables. (B) Post-process in which three 27-node volumes are evaluated, PTZ: Posterior
transition Zone, CNP: Center of the nucleus pulposus, AT: Anterior transition zone.

2.2 Differentiable Rendering optimization

This section proposes a novel optimization approach for our previous work [13]
based on differentiable rendering. A rendering function Rf takes geometry (shape)
parameters θs, camera parameters θc and lighting parameters θl as inputs, and
renders images. In our case, these are a silhouette image Is and a depth image
Id. We denote the inputs to the renderer as θ = {θs, θc, θl} and the outputs
as I = {Is, Id}. Figure 2 displays the optimization process using differentiable
rendering. The renderer takes as input θ and produces outputs I corresponding
to scene parameters and the type of renderer. The camera and light settings are
fixed across the shapes during training and are not optimized. The images are
rendered at a resolution of 256× 256. For each shape, views are captured from
different angles during each iteration, and the loss is computed with the ground
truth silhouette and depth images.

2.3 Objective function

Finding an estimate of shape and appearance is formulated as a minimization
problem. Our total loss is composed of an appearance loss and geometric loss. The
appearance loss is composed of two terms Lsilhouette and Ldepth. Lsilhouette is a
Dice loss and is calculated between the rendered silhouette and the ground truth
silhouette images. Ldepth is computed by measuring the L1 distance between
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Fig. 2. The architecture of our 3D reconstruction network (top) and the optimization
procedure using differentiable rendering (bottom)

the rendered depth map and the ground truth depth map to enhance geometric
consistency. Both are averaged over a set of calibrated renderings. Deforming ver-
tices unregulated leads to meshes with self-intersections and degenerate triangles,
which are undesirable. Therefore, we use two regularization terms. To reconstruct
smooth meshes, we use a Laplacian loss that regularizes the difference between
a vertex p of the predicted mesh P and the mean location of its neighboring
vertices kp in the neighborhood Np and a normal consistency loss given by:

LLaplacian(P) =
∑
p∈P

∥p −
∑

kp∈Np

1

|Np|
kp∥22 (1)

Lnormal =
1

|F̂ |

∑
i,j∈F̂

(1− ni · nj)
2 (2)

where F̂ is the set of pairs of triangles that have a common edge and ni ∈ R3 is
the normal of triangle i.

2.4 Biomechanical Simulation

The disc morphologies derived from our deep learning network are further used
in FE simulations, emulating the average daily compressive loading of the discs,
derived from in vivo intradiscal pressure measurements in [19]. These compressive
loads are 0.11 MPa for the night and 0.54 MPa for the day during two days, as
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was specified in the methodology in [12]. We compared the simulation outcomes
from our pipeline versus those derived from manual segmentation to ascertain the
efficacy of Pixel2Mechanics. A set of five personalized IVD model geometries with
heights ranging from ∼ 8-16 mm resulted from a morphing process that adjusted
a standardized FE IVD mesh to the specific morphological characteristics of each
disc. The structure of the mesh was tissue-specific and verified against mesh
convergence analysis in [15], with subsequent validations performed in [9] and
[12], building upon an original structured model in [14]. [12] provides an in-depth
description of this process, which employs Bayesian Coherent Point Drift++
[7]. The Hausdorff distance evaluates the similarity score between the generated
models and the morphed ones, as [12] indicates. The biomechanical properties
assigned to the models are characterized by an osmo-poro-hyper-viscoelastic
material model, outlined in [12].

3 Experiments

Dataset: We used 150 T2-w sagittal volumes from the former project MySpine
(FP7-ICT-2009-6-269909) obtained from CETIR, Barcelona, Spain, and NCSD,
Budapest, Hungary. The sagittal and coronal volumes were fused as done in
[2] to obtain a high-resolution volume and were annotated by clinical experts.
This was done solely to obtain the ground truth meshes, which were not used
for training and testing. All the scans have a resolution of 0.68× 0.68 mm and
a slice thickness of 4.0 mm or 4.4 mm. We use Adam as the optimizer with a
learning rate of 2e−4 with a PolyLR learning rate decay. We performed a 3-fold
cross-validation training strategy with 100 volumes for training, 20 for validation,
and 30 for testing. A subset of this test set consisting of L1-L2 to L4-L5 IVDs
(four discs) of a single patient was used to test the FE mesh generation tool.
Five L4-L5 IVDs from different patients were used to perform the biomechanical
simulations.

Models obtained via manual segmentation, previously simulated with the
same characteristics of this study in [12], are accessible through the SpineView‡

online user interface [11]. The results of the simulations were evaluated in three
27-node volumes (Figure 1B) for early IDD states [12], such as the posterior
transition zone (PTZ), the center of the nucleus pulposus (CNP), and the anterior
transition zone (ATZ), selected because they might stand for local sites of early
damage [17]. A comparative analysis of these results was then conducted between
the models from our deep learning network and the counterpart models from
manual segmentations.

To evaluate the feasibility of our tool, we implemented a comparative analysis
of the calculated mechanical responses—maximum and minimum stresses and
hydrostatic pressure (σI, σIII, p)—against the posterior, middle, and anterior
heights (PH, MH, and AH). This method was inspired by the findings in [12],
who identified a significant correlation between mechanical behaviors and mor-
phological characteristics. The research highlighted that although specific local
‡ https://ivd.spineview.upf.edu/

https://ivd.spineview.upf.edu/
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morphologies may dominate within distinct sectors, the mechanical diversity is
significantly shaped by the morphology of neighboring areas.

4 Results

4.1 IVD reconstruction

To our knowledge, no prior deep-learning networks can reconstruct anatomical
shapes using differentiable rendering. We compare our results to Voxel2Mesh
[18] for direct mesh reconstruction from volume. It was adapted to train on a
differentiable rendering setting, i.e., we removed the 3D decoder network that
outputs the 3D segmentation as it is unfair to simultaneously train the model with
3D segmentation and 2D renderings. Segmentation approaches were studied in
[13] and the findings indicate that although Dice scores benefit the segmentation
models, they are constrained by slice thickness and voxel coordinate system. This
makes it challenging to accurately model the degenerated discs in L34 and L45
regions as illustrated in Figure S2 of the supplementary material. We compare
our results with the ground truth meshes through Hausdorff Distance (HD) and
Point-to-Surface (P2S).

Quantitative results for IVD components AF and NP meshes are presented in
Table 1. Our method with differentiable rendering scored an average Hausdorff
distance of 4.03± 0.74 mm and an average Point-to-Surface (P2S) distance of
2.26± 0.65 mm performing better than Voxel2Mesh, which scored 4.76± 1.03
mm for Hausdorff distance and 2.81± 0.96 mm for the Point-to-Surface distance.
Compared to AF reconstruction, generating NP meshes is challenging. Accurately
detecting NP within the intervertebral disc (IVD) using a low-resolution MRI
image presents a significant challenge. This is evident in the reconstruction
results in Table 1. Figure S1 in supplementary material shows further examples
of qualitative comparison of our cross-level feature fusion with Voxel2Mesh.

Table 1. Reconstruction results for the AF and NP meshes with their std. error in mm

Method HD (AF) P2S (AF) HD (NP) P2S (NP)
Voxel2Mesh (DR) 4.76± 1.03 2.81± 0.96 5.01± 1.13 2.80± 1.12

Ours 4.03± 0.74 2.26± 0.65 4.93± 0.94 2.81± 0.43

4.2 Biomechanical Simulation

The similarity score of the AF and NP for the L4-L5 levels of the patient NC0031
is shown in Table 2. A visual comparison between the reconstructed and morphed
models can be found in the supplementary material Figure S3.

The morphological features, simulation results, and similarity scores between
the real and morphed models of the L4-L5 spine IVD models generated by the
morphing process used in the simulations are delineated in Table 3. A visual
comparison can be found in the supplementary material Figure S4.
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Table 2. Similarity % for the L1-L2 to L4-L5 levels of the lumbar IVD spine

Si
m

il
ar

it
y

% Tissue L1L2 L2L3 L3L4 L4L5

AF 90.71 94.30 93.85 90.88
NP 88.00 90.71 93.30 88.62

Table 3. The similarity score (S%), heights, and simulation results (maximum σI and
minimum stress σIII, and hydrostatic pressure p) evaluated in the three volumes, CNP,
PTZ, and ATZ, of the morphed models with three different heights from highest to
lowest. MH: Middle height, PH: Posterior Height, AH: Anterior Height, PTZ: Posterior
Transition Zone, CNP: Center of the Nucleus Pulposus ATZ: Anterior Transition Zone.

Model S % Disc height (mm) PTZ (MPa) CPN (MPa) ATZ (MPa)
ID AF NP PH MH AH σI σIII p σI σIII p σI σIII p

NC0031 90.88 88.62 6.05 15.99 11.51 -0.205 -0.584 0.221 -0.264 -0.490 0.267 -0.099 -0.529 0.181
NC0092 90.84 91.12 7.94 11.16 8.37 -0.181 -0.571 0.224 -0.298 -0.548 0.276 -0.232 -0.559 0.254
NC0003 93.46 92.77 7.22 9.52 11.15 -0.133 -0.533 0.130 -0.294 -0.564 0.291 -0.127 -0.542 0.222
NC0228 94.37 93.48 5.65 9.42 8.03 -0.146 -0.539 0.185 -0.253 -0.499 0.260 -0.086 -0.432 0.121
NC0225 93.63 93.88 4.06 8.27 6.35 -0.197 -0.520 0.228 -0.282 -0.520 0.274 -0.178 -0.573 0.222

5 Discussion and Conclusion

We present a highly scalable, fully automatic pipeline to generate high-resolution
reconstructions of the IVDs from clinical MRI and perform patient-personalized
biomechanical simulations. While triangle meshes effectively represent anatomy,
they pose challenges in differentiable rendering. We addressed this with geometry
regularizers, but balancing smoothness and rendering remains an open question.
By simulating the mechanical behavior of the disc under different loads and
conditions, these simulations can help identify subtle changes in disc integrity
that might not be readily apparent from MRIs alone. We demonstrate that the
results generated by this pipeline are highly correlated and agree with those
generated by manual segmentations without human-in-the-loop correction.

The study revealed that the four IVDs generated from patient NC0031,
along with five discs of varying heights, demonstrated a high similarity score,
exceeding 90% for both the AF and NP in nearly all models. These results
validate observations in [12], noting the complex relationship between mechanical
responses and morphology, indicating that additional morphological aspects
influence mechanical responses. This observation extends to the posterior and
anterior regions, emphasizing the importance of detailed morphological assessment
of the IVD for accurate simulation representation. Consequently, this study
underscores the importance of customizing not only the disc height but also the
overall morphology to achieve feasible simulations.

This work indicates that automatic reconstructions may effectively substitute
human interventions, which are time-intensive and costly to obtain, in offering a
reliable alternative for quantifying disc morphology and biomechanical responses.
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