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Abstract. Early diagnosis of rectal cancer is essential to improve pa-
tient survival. Existing diagnostic methods mainly rely on complex MRI
as well as pathology-level co-diagnosis. In contrast, in this paper, we
collect and annotate for the first time a rectal cancer ultrasound en-
doscopy video dataset containing 207 patients for rectal cancer video
risk assessment. Additionally, we introduce the Rectal Cancer Video Risk
Assessment Network (RCVA-Net), a temporal logic-based framework de-
signed to tackle the classification of rectal cancer ultrasound endoscopy
videos. In RCVA-Net, we propose a novel adjacent frames fusion mod-
ule that effectively integrates the temporal local features from the orig-
inal video with the global features of the sampled video frames. The
intra-video fusion module is employed to capture and learn the temporal
dynamics between neighbouring video frames, enhancing the network’s
ability to discern subtle nuances in video sequences. Furthermore, we
enhance the classification of rectal cancer by randomly incorporating
video-level features extracted from the original videos, thereby signifi-
cantly boosting the performance of rectal cancer classification using ul-
trasound endoscopic videos. Experimental results on our labelled dataset
show that our RCVA-Net can serve as a scalable baseline model with
leading performance. The code of this paper can be accessed at:https:
//github.com/JsongZhang/RCVA-Net

Keywords: Rectal cancer · Ultrasound endoscopy video dataset · Ul-
trasound video classification.

1 Introduction

Rectal cancer is one of the malignant tumours with the highest morbidity and
mortality rates worldwide[5]. Due to its insidious onset, it is often difficult to
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be noticed at first, which leads to a poor prognosis for patients. The exist-
ing diagnosis of rectal cancer is based on the combination of MRI[15,11] and
pathological screening[7]. In recent years, ultrasound has attracted much atten-
tion as a simple and convenient imaging method[1,10,23]. With the design of
the probe, doctors are now able to use endoscopic ultrasound to analyse rectal
cancer via the anus. Endoscopic ultrasound imaging is intuitive and effective
for the diagnosis of rectal cancer[16]. It significantly reduces diagnostic costs
compared to the aforementioned co-diagnostics and is superior to simple super-
ficial endoscopic examinations due to the collection of acoustic imaging in the
inner periphery[22]. Moreover, the dynamic endoscopic ultrasound video visu-
alises the ultrasonographic features of different cancerous conditions compared
to static images. However, current research predominantly focuses on statistical
analysis of static images[9,19], while deep learning studies centred around video
modalities receive comparatively less attention[24].
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Fig. 1. Illustration of the five endoscopic ultrasound categories of rectal cancer in
RCEUV-207, graded T0-T4 malignancy from left to right.

For this reason, this paper first presents an endoscopic ultrasound video
dataset (RCEUV-207) of rectal cancer containing five categories to enhance the
research in this field, with different categories of lesion intercepts as shown in
Figure 1. To the best of our knowledge, this is the first benchmark dataset in
the field. Existing ultrasound analyses are almost always based on static images.
Whereas, for variable ultrasound sweeps, video data would not only provide in-
formation in the temporal dimension but also be more relevant. In addition, we
performed extensive benchmarking on this dataset and based on this, we pro-
posed a temporal fusion-based endoscopic ultrasound risk assessment network for
rectal cancer (RCVA-Net). The contributions of this paper can be summarised
as follows:

– We present the rectal cancer endoscopic ultrasound video dataset (RCEUV-
207) and detail the challenges encountered in ultrasound video analysis of
rectal cancer. This dataset enhances research in the field of computer-aided
diagnosis for rectal cancer, focusing on ultrasound video insights.

– We conducted comprehensive benchmarking at the image and video levels
for RCEUV-207 and proposed RCVA-Net, delivering key insights for this
field-specific analysis.

– Experimental results demonstrate that RCEUV-207 harbours significant re-
search potential. Our scalable RCVA-Net model exhibits leading perfor-
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mance in this field, setting new benchmarks for accuracy and efficiency in
this field.

2 The Proposed RCEUV Dataset

This paper presents ultrasound endoscopy data on rectal cancer collected in the
First Hospital of Fujian Medical University, which consists of 207 independent
patients collected from 2019-2023 (Ethical Review No. 23122). In RCEUV-207,
there are five categories corresponding to the five stages of rectal cancer ma-
lignancy pathology T0-T4. All category labels of the video data have strict
pathological diagnoses corresponding to them, which ensures that endoscopic
ultrasound results for rectal cancer based on ultrasound videos are trustworthy.

2.1 Data Statistics

Rectal endoscopic ultrasound is an imaging technique in which a miniature ul-
trasound probe is delivered through the anus into the rectum. Not only does
it provide a clear picture of the lesions contained within the rectal lining, but
due to the ability of ultrasound to penetrate the intestinal tissues, transrectal
ultrasound can also gather invasive information about the diseased tissue. In
RCEUV-207, we used this technique to collect data from a population of pa-
tients with five different grades of rectal cancer stages. In the RCEUV-207, T0
indicates cases with completely non-cancerous tissues or completely regressed
carcinomas, totalling 32 cases. T1 indicates cases where the carcinoma invades
the submucosa, totalling 14 cases. T2 indicates cases of carcinoma invasion into
the muscular layer, totalling 72 cases. T3 indicates tumours that invade through
the muscular layer, totalling 81 cases. T4 indicates cases where the carcinoma
invades other organs or structures, even through the peritoneum, with such pa-
tients being less common, totalling only 8 cases. It is worth noting that we per-
formed one process on all raw video acquisitions. Except for the video data of T0
staging, all other categories of data have been processed based on the original
collection. This indicates that the diseased tissue will not appear directly at the
beginning of the video, but will be present in the middle of the video. We used
this form of data to realistically simulate what would occur in the application.
In addition, to ensure full exposure of the malignant tissue in the ultrasound
view, the length of the videos included in RCEUV-207 varies from 15 to 60s.

2.2 Challenges in RCEUV

Rectal cancer ultrasound diagnosis based on endoscopic ultrasound (EUS) means
faces several challenges when analysed using deep learning techniques. Although
deep learning has shown great potential in the field of medical image processing[14],
its application to EUS rectal cancer diagnosis specifically presents the following
challenges:
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Correlation of labels and data: When applying deep learning to medical
image analysis in ultrasound diagnosis of rectal cancer based on endoscopic ul-
trasound means, the correlation between labels and data is a core element in
achieving a highly accurate model. This relates to the accuracy and consistency
of data labelling and how to ensure that the labels truly reflect the medical
information in the images. Since endoscopic ultrasound is often not used as a
direct basis for staging diagnosis of rectal cancer at this stage of clinical practice,
mining effective data processing paradigms has become a challenge in this area.
The establishment of an endoscopic ultrasound-based risk assessment network
for rectal cancer grading based on effective pattern recognition tools to achieve
effective feature extraction and risk rating is an important task in the RCEUV-
207 analysis. In RCEUV-207, we ensured that each video category label was
derived from accurate pathological analyses, which provided a solid foundation
for ultrasound-based video analysis of rectal cancer.

Image quality and interpretability: Image quality and interpretability are
one of the main challenges when it comes to diagnosing rectal cancer ultrasound
by endoscopic ultrasound means with deep learning analysis. This challenge is
particularly highlighted in the analysis of video data, which is more complex
and difficult to process and understand than static ultrasound images. The en-
doscopic ultrasound video data for rectal cancer presented in this paper contains
time-varying image sequences that provide a dynamic view of cancer tissues
and structures under ultrasound. This dynamic information is crucial for under-
standing the nature of the cancer or other physiological processes (e.g., blood
flow dynamics at proliferations, etc.). However, video data introduces additional
complexity because changes in the time dimension must be taken into account.
In contrast, still image analysis only has to deal with data at a single point in
time, making the task technically simpler. Therefore, the video form of RCEUV-
207 requires more specific processing tools than simple still image recognition as
in the past.

Time correlation for non-static analyses: Video data undoubtedly adds
additional information in the time dimension compared to ultrasound image data
with accurate labelling. How to effectively utilise this temporal information and
extract this feature information useful for rectal cancer risk assessment consti-
tutes a challenge in terms of ultrasound video-based analysis. Ultrasound is more
dependent on the subjective experience of the operator, and therefore, it does
not exhibit complete regularity in the form of video data. In RCEUV-207, even
though we tried as much as possible to keep the lesion area in view for as long
as possible, mismatches were inevitable due to human jitter. Therefore, how to
build a dynamic analysis model for RCEUV-207 from the time dimension has
also become one of the important challenges in this field.
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Fig. 2. The overall framework of the proposed method in this paper. The input video
frames will be encoded and integrated from the perspectives of time series and random
sequences, respectively. The concatenated image patches are sequentially fed into the
Transformer Encoder network[21].

3 Method

To address the above challenges, this paper proposes a novel rectal cancer video
assessment network (RCVA-Net), as shown in Figure 2. It effectively mitigates
the uncertainty of ultrasound video-based analysis for rectal cancer brought
about by the first and second challenges. Moreover, we propose a dynamic time-
series fusion video feature extraction network to address the third challenge.
Specifically, our motivation comes from how to identify data relationships in the
temporal dimension of ultrasound videos and capture the link between previous
and subsequent frames. Based on this be able to give a global view of the video
data to better mitigate the problems mentioned in the third challenge. For this
purpose, we have introduced two data encoding methods as follows respectively.

3.1 Neighbor Sequence Encoding Module(NSEM)

The proposed Neighbor Sequence Encoding Module is shown in Figure 3. Assum-
ing that a video contains N frames, we use 3 consecutive frames as the basic data
unit. Since ultrasound images are single-channel grey-scale maps, data units with
temporal connections can be directly spliced together to obtain a 3×224×224
tensor. Immediately after that, we use an image patching means to collate the
3×224×224 data units into a 196×768 2-D matrix[3]. Due to the connectivity
between the front and back frames, for a video containing N frames, we can
obtain N 2-D matrices. For the head and tail of videos, we use them as the front
and back frame neighbourhoods respectively to be able to be consolidated into
data units. The re-encoded N 2-D matrices can reflect at a high level the con-
nections between the front and back frames of the video and provide the basis
for data preparation.

3.2 Random Sequence Encoding Module(RSEM)

In order to dynamically consider the global video data and to provide a compre-
hensive view of the data for designing the model, we propose a coding module for
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Fig. 3. The overall framework of the proposed method in this paper. The input video
frames will be encoded and integrated from the perspectives of time series(NSEM)
and random sequences(RSEM). The concatenated image patches are sequentially fed
into the Transformer Encoder network.

stochastic grasping. It is composed of three frames of video footage grabbed, but
unlike NSEM, the three frames constituting RSEM are independently sampled
randomly along the time axis. This can be mathematically described as follows:
for each frame fj (where j = 1, 2, 3), a random index ij is selected from the set
{1, 2, . . . , N} without replacement. This ensures that each frame is uniquely and
randomly selected, contributing to a comprehensive and diverse data represen-
tation. This suggests that RSEM will stochastically bring a global view to the
feature learning process. For video data containing N frames, the randomised
grab will result in taking ⌊N/3⌋ as the whole random data unit, where ⌊·⌋ de-
notes rounding down to the nearest whole number. For each of the three data
frames obtained from the grabbing, we use the data unit integration method in
section 3.1 for processing.

3.3 Feature Encoder Network

For the N 2D matrices obtained in the time series dimension with the ⌊N/3⌋
2D matrices obtained from random grabs, we re-spliced them and fed them
into the feature coding network. In this paper, we use Transformer Encoder[20]
for feature computation. In RCAV-Net, we use ViT-b as the backbone for the
feature extraction. Specifically, an RSEM output is concatenated after every
three NSEM output tensors. The alternating use of NSEM and RSEM data
loading methods enables the feature encoding network to acquire information
on the temporal dimension by having a global view. In the input stage, we
add the unique heat vector containing category information for model training.
Instead of using the random sequence coding module, the temporal order data
coding will be directly utilised for model inference.

Implementation Details: We use the ViT-b implementation pre-trained on
ImageNet-22k to initialise the feature encoding network and act as the backbone
network. The RCEUV-207 is divided into a training set and a test set at a ratio
of 5:1 and conducted ten-fold cross-validation. The cross-entropy loss is used to
control the model to learn the data categories. All videos used for training were
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subjected to basic data augmentation strategies such as randomness flipping,
cropping, and resizing. Our method was trained on torch 1.18, using Adam as
an optimiser and setting weight decay to 0.0001, with 200 iterations at a setting
of the batch of 2. All model training was performed on 2 Tesla V100(32G).

4 Experiments and Results

Evaluation Metrics: For the target task of this article, we use scenario-based
classification therapy to evaluate the performance of the baseline model. Includ-
ing accuracy, precision, recall and specificity.

4.1 Benchmarking

We benchmarked the RCEUV-207 from the perspective of 2D static image classi-
fication and video-level classification, respectively. We compared classical image
classification methods like ResNet-50[6], EfficientNet[17] ,ViT[3] ,Swin[12] etc.
and also used video classification methods on top of these algorithms like I3D[2]
,SlowOnly[4],TSM[8] , and Video-Swin[13] . The benchmarking results are shown
in Table 1. In terms of accuracy, image-based classification methods are higher
than video classification models, this is because static image analysis deals with
each image frame individually without considering the complex relationships be-
tween time series. Comparatively, video classification models try to capture the
temporal dynamics in the video, which increases the complexity of the model and
may lead to lower accuracy in some cases, which is more relevant to real-world
scenarios. As for video-level classification, it is easy to find that even for video-
swin, which has strong feature extraction capabilities for video understanding,
performing video-level classification of endoscopic ultrasound video for rectal
cancer is still challenging, which only achieves 66.7% of top-1. In contrast, the
RCVA-Net proposed in this paper is able to significantly improve the baseline
results, achieving 77.2% of video-level accuracy. This provides a new baseline
score for endoscopic ultrasound video-based rectal cancer classification.

4.2 Ablation Study

In this paper, two data encoding mechanisms, NSEM and RSEM, are proposed
to ensure that the global dynamic representation of the video data is maintained
while accurately capturing key features in continuous time variation. The results
of the ablation experiments in Table 2 demonstrate that the performance of the
model obtains significant improvement when both NSEM and RSEM are utilised.
Specifically, NSEM provides the model with a correlation of video objects in a
near-continuous process in the video, while RSEM complements the in-depth
understanding of the relationships between the global scenes of the video and
the changes in the temporal dimension. This two-pronged strategy allows the
model to not only grasp the information of each frame but more importantly, to
understand how these frames evolve and interrelate over time.
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Table 1. Benchmark Results on RCEUV-207 Dataset

Model Type Accuracy (%) Precision (%) Recall (%) Specificity (%)

ResNet-18[6] Image 77.1 84.3 87.1 44.5
ResNet-50 Image 78.1 64.7 78.5 76.9
EfficientNet[17] Image 78.4 93.3 63.6 94.4
ViT-b[3] Image 81.9 85.7 70.5 91.3
Swin-t[12] Image 80.0 76.9 66.7 88.0
SlowOnly(RN50)[4] Video 38.9 37.5 47.3 28.5
TSM[8] Video 39.0 29.6 57.1 26.9
SlowFast(RN101)[4] Video 33.4 32.2 66.7 16.0
R(2+1)D[18] Video 33.4 42.8 37.5 25.0
I3D(RN50)[2] Video 27.8 38.9 28.0 26.6
Video-Swin-t[13] Video 66.7 69.2 47.3 80.9
RCVA-Net(Ours) Video 77.2 80.8 84.0 66.7

In addition, the ablation experiments demonstrated the unique roles and
complementary nature of NSEM and RSEM in the model, with the absence
of either element resulting in a degradation of the model’s performance. This
data loading and processing method not only enhances the model’s ability to
understand video data but also provides new ideas and methods for future video
analysis and processing techniques.

Table 2. Ablation experimental results

NSEM RSEM Accuracy (%)

Baseline ✓ 66.05
✓ 51.23

RCAV-Net ✓ ✓ 77.21

5 Conclusion

In this paper, we first successfully proposed and labelled the first dataset for
endoscopic ultrasound analysis of rectal cancer, which covers 207 cases and 5
different categories. The creation of this dataset provides a valuable resource for
an in-depth understanding of endoscopic ultrasound image characterisation and
classification of rectal cancer. Given the unique challenges of endoscopic ultra-
sound data analysis for rectal cancer, including the diversity of image qualities,
the complexity of time-series data, and the problem of recognising subtle differ-
ences between categories, we propose a novel deep learning framework, RCAV-
Net. RCAV-Net is designed to enhance the video classification model’s ability to
recognise features of rectal cancer by fusing continuous-frame and random-frame
features. which in turn improves the accuracy of disease detection. Through a
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series of benchmark tests on the proposed dataset, RCAV-Net demonstrates its
significant advantages over existing state-of-the-art methods for the task of en-
doscopic ultrasound classification of rectal cancer.
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