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Abstract. Deep learning has been widely utilized in medical diagnosis.
Convolutional neural networks and transformers can achieve high pre-
dictive accuracy, which can be on par with or even exceed human perfor-
mance. However, uncertainty quantification remains an unresolved issue,
impeding the deployment of deep learning models in practical settings.
Conformal analysis can, in principle, estimate the uncertainty of each
diagnostic prediction, but doing so effectively requires extensive human
annotations to characterize the underlying empirical distributions. This
has been challenging in the past because instance-level class distribution
data has been unavailable: Collecting massive ground truth labels is al-
ready challenging, and obtaining the class distribution of each instance
is even more difficult. Here, we provide a large skin cancer instance-level
class distribution dataset, SkinCON, that contains 25, 331 skin cancer
images from the ISIC 2019 challenge dataset. SkinCON is built upon
over 937, 167 diagnostic judgments from 10, 509 participants. Using Skin-
CON, we propose the distribution regularized adaptive predictive sets
(DRAPS) method for skin cancer diagnosis. We also provide a new eval-
uation metric based on SkinCON. Experiment results show the quality
of our proposed DRAPS method and the uncertainty variation with re-
spect to patient age and sex from health equity and fairness perspective.
The dataset and code are available at https://skincon.github.io.
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1 Introduction

Deep learning and computer vision approaches are increasingly employed in med-
ical practice to assist clinicians in their decisions. Recent artificial intelligence
* Equal contribution; † Corresponding author: peter.zhren@berkeley.edu
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diagnostic algorithms can even rival human levels of performance [9, 14], with
state-of-the-art skin cancer diagnostic models achieving over 90% accuracy [2,
7]. However, it is hard to deploy those superior AI models into realistic clinical
scenarios; mistrust is a major barrier to clinical implementation of deep learning
predictions [13, 21].

Imagine you are a doctor who is making an important diagnostic decision,
trying to determine what type of skin cancer a particular lesion sample is. You
are provided with a class label produced from several state-of-the-art computer
vision models. With potential biases and unexplainable errors [23], would you
choose to trust those state-of-the-art computer vision models? Currently, a max-
imum likelihood diagnosis (which most classifiers adopt)— even with the known
overall performance of the classifier and an accompanying probability—may not
be the essential information for you. To make an accurate diagnosis, you may
want to consider all potential disease types, and you might want to take into
account the possibility of an especially harmful (mis)diagnosis or lesion type.
Thus, in addition to an estimate of the most likely outcome, you would like the
classifier to also offer you actionable uncertainty quantification. This can be a
set of predictions that provably covers the true diagnosis with a high probability
(e.g., 90%), and it is called a prediction set (see Figure 1).

{Melanoma: 0.971, Nevus: 0.028} { Melanoma: 0.179,  Nevus: 0.819} { Melanoma: 0.83}

Fig. 1. Prediction set examples on ISIC 2019 challenge dataset. We show three
examples of the class Melanoma and the 90% prediction sets generated by DRAPS.

Conformal analysis [24] is a rigorous statistical method to generate such a
prediction set, i.e., the conformal prediction set. Formally, imagine we have n
data samples {(Xi, Yi)}ni=1 with features Xi ∈ Rp and a discrete label Yi ∈
Y ={1, 2, ..., C}. The samples are drawn exchangeably (e.g., i.i.d., although ex-
changeability alone is sufficient) from some unknown distribution PXY . Given
such data and a desired coverage level 1−α ∈ (0, 1), we seek to construct a pre-
diction set Ĉn,α ⊆ Y for the unseen label of a new data point (Xn+1, Yn+1), also
drawn exchangeably from PXY , achieving marginal coverage; that is, obeying

P[Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1− α (1)

The probability above is taken over all n + 1 data points, and we ask that
Inequality 1 holds for any fixed α, n, and PXY . Traditional conformal predic-
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tors [18, 11, 16, 19, 1, 15, 3] can modify any black-box classifier to output predic-
tive sets that are rigorously guaranteed to satisfy the desired coverage property
shown in Inequality 1. These traditional conformal predictors generally need a
calibration dataset that can help the algorithm establish thresholds based on
different desired coverage levels. Then the conformal prediction set can be gen-
erated by comparing the logits from the networks to the established threshold.

This kind of formal quantification of uncertainty is the need of the hour for
high-stakes biomedical applications of AI, like computational cancer sub-typing:
a guarantee of predictive robustness would provide trustable interpretation for
clinicians to adopt AI-based models as valid clinical decision support systems.
A challenge here is that skin lesions are highly heterogeneous, and hence out-of-
distribution samples are often the norm rather than being rare outliers. More-
over, skin cancer diagnosis can suffer from a lack of consensus among clinicians.
Because conformal analysis assumes that the class labels provided are trustable,
what is needed is something more flexible than standard conformal prediction.
We therefore propose a ‘conformal inspired’ approach, which starts off with a
similar formulation, but then modifies it to match a distribution of labels from
multiple experts.

To achieve this, the present work makes two significant contributions. First,
we collect and curate a new multi-label skin cancer dataset SkinCon, which
starts with the benchmark ISIC 2019 repository but presents it to a group of
proficient annotators (e.g., clinicians) to label each sample, thus, creating a label
distribution for consensus building. Second, on the methodological end, we start
with the conformal formulation but regularize it to match the label distribution,
while still maintaining state-of-the-art coverage and conformal set size. We name
this novel method DRAPS (distribution regularized adaptive prediction sets),
which, to our knowledge, is the first of its kind for consensus building in cancer
sub-typing. In addition to applications in skin cancer, DRAPS is model agnostic
and may be used for any such cancer sub-typing scenario. Finally, in this study,
with the instance-level consensus that SkinCON provided, we propose a new
evaluation metric — a “hit rate” to evaluate the quality of the prediction set.

2 SkinCON

SkinCON contains 25, 330 skin cancer images from the ISIC 2019 challenge
dataset [22, 4, 5] and is built upon over 937, 167 diagnostic trials from 10, 509
participants. The skin lesion diagnoses were collected through DiagnosUs, an
app developed by Centaur Labs, a US medical Artificial Intelligence (AI) com-
pany based in Boston, MA. SkinCON dataset contains every skin cancer image
information about the filename reference to the ISIC 2019 challenge dataset,
the number of qualified reads, the correct label, the majority label, difficulty,
agreement, and the corresponding number of qualified reads for 8 skin cancer
types. The 8 skin cancer types include: actinic keratosis, basal cell carcinoma,
benign keratosis, dermatofibroma, melanoma, nevus, squamous cell carcinoma,
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and vascular lesion. We noticed there is another SkinCON Dataset [6]. However,
they focus on fine-grained analysis, while ours aims on uncertainty estimation.

SkinCON directly provides us with the instance-level empirical response dis-
tributions of lesion images. Collecting a massive quantity of human responses
reveals resulting distributions that naturally depict the inherent uncertainty of
each skin cancer image. Figure 2 shows the diverse response distributions of
sample skin lesion images from different categories. Even from the same cate-
gory, the response distribution can vary a lot. However, with noisy responses,
the consensus (accuracy after popularity voting) is 61.86% (v.s., chance level
of 12.5%). It means that our data captures important information about the
response distribution.

Fig. 2. Response distributions on ISIC 2019 challenge dataset. We plot the
response frequency of sample skin cancer images. We argue that the empirical response
distribution may reveal the inherent skin cancer property.

2.1 Health Fairness Study

The ISIC 2019 challenge dataset also provides us with the demographic data
of patients. Using patients’ demographic information, we group the skin cancer
images with regard to gender and age, respectively. We then check the diagnostic
accuracy for each category of lesion. Results are shown in Figure 4 and Figure 3.

We find there are significant differences between patient gender in the cases of
benign keratosis (p < 0.001), nevus (p < 0.001), vascular lesion (p < 0.05), and
overall skin cancer categories (p < 0.01). The significance test was conducted
by comparing the empirical mean difference value with the null distribution of
differences, corrected for multiple comparisons.
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Fig. 3. Diagnostic biases as a function of patient gender in ISIC 2019 chal-
lenge dataset. Significant differences were found as a function of patient gender for
benign keratosis, nevus, vascular lesion, and overall skin cancer categories. *p < 0.05,
**p < 0.01, ***p < 0.001

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

0.0

0.5

A
cc

ur
ac

y

actinic keratosis

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

basal cell carcinoma

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

benign keratosis

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

0.0

0.5

A
cc

ur
ac

y

dermatofibroma

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

melanoma

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

nevus

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

0.0

0.5

A
cc

ur
ac

y

squamous cell carcinoma

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

vascular lesion

0-
19

20
-3

9

40
-5

9

60
-7

9

80
-9

9

Age Group

all

Fig. 4. Diagnostic biases as a function of patient age in ISIC 2019 challenge
dataset.
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For different age groups, we find the biases are different for different skin
cancer categories. In particular, we find overall diagnostic accuracy decreases as
patient age increases. The reasons for this are unknown but could involve many
different factors and possible confounds. In any case, taking into account these
differences may be important.

2.2 Data Annotation Procedure

The participants were mostly composed of medical students, with some medical
residents. Individual subject information such as age or sex is not known. All
participants have normal or corrected-to-normal vision. Users receive earnings
from a predefined money pool (around 50 USD) for each task they complete.

After downloading the DiagnosUs app and giving consent to have Centaur
Labs use the data they provide through app usage, users can choose between
different tasks. For the dermatological classification task that was investigated
in this study, users first completed a training session of 10 trials with 10 separate
stimuli. This training explained the procedure of the task and prepared users for
the actual classification task, which was identical to the training. In each trial, a
random skin lesion image was selected and presented to the participant. Below
the image, they were prompted to choose one of the eight possible skin cancer
types. Feedback was provided after every trial to inform users if their response
was correct or incorrect. Afterward, users voluntarily moved on to the next trial
at their own pace. Users were told they could end the task at any time.

Data monitoring, storage, and safety procedures were carried out in accor-
dance with university-approved IRB protocols.

3 Distribution Regularized Adaptive Prediction Sets

SkinCON allows us to directly learn the instance-level distribution end-to-end via
deep learning models. In this study, we propose the distribution regularized adap-
tive prediction sets, DRAPS. For any deep learning diagnostic backbones, we
train it via general cross-entropy loss LEntropy with additional Kullback–Leibler
(KL) divergence loss LKL, L = LEntropy + λLKL. The KL divergence measures
how different two distributions are. The larger the KL divergence loss, the more
different the two distributions are. During training, the model parameters are
optimized to minimize the KL divergence loss that forces the learned distribu-
tion to be similar to the empirical distribution. With the help of KL-divergence
loss, classifiers can match the empirical distribution of training instances.

We directly calibrate our proposed method on the training dataset. Given
the softmax logits s ∈ [0, 1]n×K and ground truth labels for each of n examples
in the training set y ∈ {0, 1, ...,K}n with K possible classes. We can find the
softmax logit of each example’s ground truth label Ei, i.e. si,j where j = yi.
Then, the (⌊α ∗ n⌋ − 1)-th smallest value in {Ei}ni=1 is the threshold τ of our
proposed method. Algorithm 1 summarises this module.
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Algorithm 1 Distribution Regularized Adaptive Prediction Calibration
Input: α; s ∈ [0, 1]n×K , y ∈ {0, 1, ...,K}n respectively to the scores, and ground

truth labels for each of n examples in the training set.
procedure DRAPC(α, s, y)

for i ∈ {1, ..., n} do
Ei ← si,j such that j = yi

τ ← the (⌊α ∗ n⌋ − 1)-th smallest value in {Ei}ni=1

return τ

Output: Threshold τ

After the threshold τ is obtained, we can generate the prediction set C for
each sample accordingly. For each test sample’s softmax logits si, we compare
it with the obtained threshold τ . The corresponding label will be appended to
the prediction set C if the softmax logit is greater or equal to the threshold, i.e.,
satisfying si ≥ τ . Algorithm 2 summarises this module.

Algorithm 2 Distribution Regularized Adaptive Prediction Sets
Input: α, the scores s for a test-time example, threshold τ from Algorithm 1.

procedure DRAPS(α, s, τ)
C ← {}
for i ∈ {1, ...,K} do

if si ≥ τ then
C.append(si)

return C

Output: The 1 - α confidence set, C

3.1 Hit Rate

SkinCON contains instance-level response distribution, therefore, it can provide
an ordering of skin cancer categories for a specific lesion. Here, we propose to
utilize Hit Rate (HR) that utilizes this ordering to evaluate the quality of certain
prediction sets. Given the prediction set C with size k and the top k responses of
this skin cancer image Rk, Hit Rate (HR) = len(C ∩Rk)/k. Intuitively, the Hit
Rate will be maximized when the prediction set with length k exactly contains
the top k responses.

4 Experiments and Results

We compare three methods: a naive baseline (Naive), regularized adaptive pre-
diction sets (RAPS) [1], and our proposed DRAPS. The naive baseline is ba-
sically directly utilizing the standard cross-entropy loss to train the diagnostic
task without matching the empirical response distribution. The latter calibration
and prediction set generation processes are the same as our proposed DRAPS.

We adopt multiple image classification backbones for experiments, including
variants of ResNet [10], ResNeXt [25], VGG [20], ShuffleNet [26], and DenseNet [12].
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4.1 Implementation Details

All experiments are implemented through PyTorch platform [17] and trained on
a single NVIDIA GeForce RTX 2080 Ti. The learning rate is set to 0.001 for all
model training with a stochastic gradient descent (SGD) optimizer. λ = 0.1 for
the KL-divergence loss. The training epoch is 30 for all experiments, and the
batch size is 8. The training and testing data are split with a ratio of 9 : 1 for
all classes.

4.2 Prediction Set Results

We test the proposed distribution regularized adaptive prediction sets (DRAPS)
at α = 0.1. Results are shown in Table 1. The top-1 and top-5 accuracies indicate
the performance of those backbone models. Our DRAPS can reach the desired
coverage level while utilizing the smallest average prediction set size. It is noted
that modern models like vision transformers (ViTs) [8] have been utilized in
medical image recognition tasks. We expect the performance gain would be less
with better baseline models.

Model Accuracy Coverage Size
Top-1 Top-5 Naive RAPS Ours Naive RAPS Ours

ResNet18 91.62 99.94 0.928 0.964 0.935 1.278 1.183 1.054
ResNet50 92.07 100.0 0.935 0.967 0.941 1.165 1.192 1.104
ResNet101 93.02 100.0 0.947 0.961 0.931 1.367 1.163 1.047
ResNet152 91.50 99.94 0.934 0.961 0.936 1.241 1.167 1.021

ResNeXt101 92.77 99.87 0.938 0.972 0.941 1.050 1.179 1.006
VGG16 91.52 99.87 0.927 0.961 0.924 1.056 1.213 1.008

ShuffeNet 89.85 99.56 0.923 0.968 0.926 1.241 1.414 1.154
DenseNet161 92.83 99.94 0.941 0.971 0.936 1.141 1.146 1.034

Table 1. Results on ISIC 2019 Challenge Dataset with α = 0.1 We report
coverage and size of naive, RAPS, and our proposed method for eight different image
classifiers.

4.3 Hit Rate as a New Evaluation Metric

Based on SkinCON, we propose Hit Rate as a new evaluation metric to quantify
the quality of the prediction set. Results from different methods are shown in Ta-
ble 2. DRAPS achieves the best hit rate, benefitting from learning the empirical
response distribution.

5 Conclusion

In this paper, we release the SkinCON, a large skin cancer instance-level class
distribution dataset for decision consensus building. We also propose the distri-
bution regularized adaptive prediction sets (DRAPS) to increase the predictive
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Model Hit Rate
Naive RAPS Ours

ResNet18 0.852 0.902 0.905
ResNet50 0.884 0.901 0.902
ResNet101 0.849 0.900 0.905
ResNet152 0.866 0.908 0.912

ResNeXt101 0.913 0.915 0.920
VGG16 0.904 0.905 0.905

ShuffeNet 0.863 0.878 0.884
DenseNet161 0.892 0.906 0.910

Table 2. Hit Rates on ISIC 2019 Challenge Dataset with α = 0.1 We report the
hit rates of naive, RAPS, and our proposed method for eight different image classifiers.

robustness. Finally, we propose the hit rate as a new evaluation metric to quan-
tify the quality of the prediction sets. We visualize the uncertainty variation with
respect to patient age and sex from a health equity and fairness perspective.
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