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Abstract. Deformation recovery from laparoscopic images bene�ts many
downstream applications like robot planning, intraoperative navigation
and surgical safety assessment. We de�ne tissue deformation as time-
variant surface structure and displacement. Besides, we also pay atten-
tion to the surface strain, which bridges the visual observation and the
tissue biomechanical status, for which continuous pointwise surface map-
ping and tracking are necessary. Previous SLAM-based methods cannot
cope with instrument-induced occlusion and severe scene deformation,
while the neural �eld-based ones are o�ine and scene-speci�c, which
hinders their application in continuous mapping. Moreover, neither ap-
proach meets the requirement of continuous pointwise tracking. To over-
come these limitations, we assume a deformable environment and a mov-
able window through which an observer depicts the environment's 3D
structure on a canonical canvas as maps in a process named impasto. The
observer performs panoramic impasto for the currently and previously
observed 3D structure in a two-step online approach: optimization and
fusion. The optimization of the maps compensates for the error in the ob-
servation of the structure and the tracking by preserving spatiotemporal
smoothness, while the fusion is for merging the estimated and the newly
observed maps by ensuring visibility. Experiments were conducted using
ex vivo and in vivo stereo laparoscopic datasets where tool-tissue interac-
tion occurs and large camera motion exists. Results demonstrate that the
proposed online method is robust to instrument-induced occlusion, ca-
pable of estimating surface strain, and can continuously reconstruct and
track surface points regardless of camera motion. Code is available at:
https://github.com/bmpelab/trans_window_panoramic_impasto.git

Keywords: Deformation recovery · Soft tissue tracking · Computer-
assisted intervention.

1 Introduction

Tissue deformation is common during laparoscopic intervention due to tool-
tissue interaction and cardiac and respiratory pulsations. In this article, we
de�ne tissue deformation as time-variant surface structure and displacement.
Besides, we also pay attention to the surface strain during the operation, an
important biomechanical factor that indicates the tension status and may reveal
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the tissue destruction mechanism [20, 21], for which continuous pointwise map-
ping and tracking are necessary. Various downstream applications, such as robot
planning [24, 16, 18], intraoperative navigation [11, 23, 15] and surgical safety as-
sessment [1, 3], may bene�t from tissue deformation recovery, however, which
remains challenging. The di�culties include, but are not limited to, complex
tissue structure, camera motion, severe tissue deformation, and tool-tissue inter-
action that leads to surface change and occlusion.
Previous deformation recovery methods can be roughly divided into three cat-
egories: visual simultaneous localization and mapping (SLAM)-based [17, 14],
neural �eld (NeF)-based [19, 22] and scene �ow-based methods [2, 3]. SLAM has
been widely used for reconstructing a large scale of a scene using images in an
online approach. Recently, some have implemented SLAM-based techniques in
reconstructing deformable scenes in the abdomen area [17, 14], but these meth-
ods are still vulnerable to severe tissue deformation and tool-induced occlusion
and cannot cope with complex tissue structures [19]. NeF, as an implicit repre-
sentation of 3D structure using multilayer perceptron (MLP), has been demon-
strated to be useful in reconstructing 3D scenes with good characteristics for
handling occlusion [13]. Recent NeF-based works succeeded in reconstructing
surface deformation even in the occluded area from laparoscopic videos [19, 22].
However, the method is o�ine and su�ers from its scene-speci�c characteristics,
which hinder its application in continuous surface mapping. Moreover, neither
the SLAM-based nor the NeF-based methods meet the requirement of continuous
pointwise tracking, since SLAM-based methods typically perform the registra-
tion between the newly observed and the previously modeled scene in the point
cloud scale [17, 14], while the NeF-based ones model the displacement, referring
to a canonical space where the same entity may appear in multiple locations [13],
leading to the failure of identifying the same entity in inter-frame tracking. On
the other hand, scene �ow models the pointwise inter-frame 3D displacement,
which relies on the visibility of the points for tracking and thus is vulnerable to
occlusion. To mitigate the occlusion problem, scene �ow-based methods for tis-
sue deformation recovery leverage thin-plate splines [3] or mesh connectivity [2]
for interpolating the lost-of-tracking area. However, these methods hypothesize a
constant surface continuity, which is not true in some operations like dissection,
and cannot model points that move outside the �eld of view (FOV).
To overcome all these limitations, we propose a novel explicit representation of
the deformation as the time-variant surface structure and displacement maps de-
�ned in a canonical canvas space. We then propose an online method for tissue
deformation recovery by optimizing and fusing these maps based on the natural
physical assumptions of spatiotemporal smoothness and visibility. The proposed
method is robust to tool-induced occlusion and capable of continuous surface
mapping and pointwise tracking under various operations, such as grasping, dis-
section, traction, and palpation, regardless of camera motion, as demonstrated
via experiments using ex vivo and in vivo laparoscopic datasets.
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Fig. 1. Illustration of our proposed method, namely trans-window panoramic impasto,
for online tissue deformation recovery.

2 Method

2.1 Overview

In this article, we propose an online method for deformation recovery from la-
paroscopic images. As shown in Fig. 1, an observer observes the environment
through a window, representing the camera, and depicts the 3D structure on a
canonical canvas as maps in a process named impasto. Although the observer
is static to the window, since it leverages the currently and previously observed
structure and tracks between these observations, it can depict a panoramic view
of the outside environment just like the window does not exist. Such a novel
problem setting is naturally suitable for handling a deforming environment, as it
always models the latest status of the environment rather than modeling the en-
vironment under a rigid body assumption. Although some areas may have moved
out of the FOV or be occluded, with the proposed optimization and fusion by
preserving spatiotemporal smoothness and visibility, we can still recover their
deformation in the sense of the time-variant surface structure and displacement.

2.2 Impasto: Parameterization of 3D Surface

We propose to leverage the surface map to represent the 3D surface of the tis-
sues observed from the laparoscope, unlike previous methods [2, 17], where the
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3D point cloud or the mesh were used. Inspired by impasto, a painting technique
where paint is laid sticky on an area for stereoscopic feeling, we use the term
impasto to describe the parameterization of a 3D surface on a 2D space. Let's
say S is a 3D point set of a 3D surface. Impasto builds a surface map M where
each pixel corresponds to a 3D point, as M : U ⊂ R2 → S ⊂ R3. In practice,
we implement the camera projection to establish the correspondence between
the pixels and 3D points. Although there is no limitation on the techniques
for acquiring the 3D surface, we recommend implementing the binocular-based
ones for better online performance [7, 8, 12]. Note that we only parameterize
the smooth subsets of the 3D surface and neglect those rough areas like sharp
edges and discontinuous areas. Such that M is a homeomorphism and di�eren-
tiable, meaning that M has di�erential structure, which is useful in geometric
optimization. The derivative of M at p = (u, v) ∈ R2 can be represented as:

dM|p =

[
∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

]
(1)

where (x, y, z) = M(u, v). These derivative elements form tangent vectors and
tangent planes of a 3D surface S at M(p) [9], representing local geometric
properties of the surface.

2.3 Canonical canvas

Unlike SLAM, where the camera is moving around the environment for gradually
generating 3D mapping [17, 14], we propose a novel problem setting where an
observer is static to the camera, the window, through which it performs impasto
for the outside environment on a 2D space, namely the canonical canvas. The
outside environment can be deforming and have relative motion with respect to
the window, as shown in Fig. 1. As compared to the image space, where the height
and the width are �xed, the canonical canvas is a borderless space that enables
the impasto for the structure even outside the current FOV. Therefore, we can
panoramically depict the environment in front of the observer while preserving
its latest appearance and deformation status. In this article, the deformation is
de�ned as time-variant surface structure and displacement. Thus, the canonical
canvas is actually a space of R2 × t.

2.4 Map Optimization

From the perspective of the observer, it is the environment that is moving
rather than the camera. Such that we have a uniform representation of all
the dynamic information, including the environment deformation and the rigid
movement caused by camera motion, as a 3D displacement map (scene �ow
map) Fc : Uc ⊂ R2 → R3 and a 2D displacement map (optical �ow map)
Oc : Uc ⊂ R2 → R2 de�ned in the canonical canvas. These displacement maps
indicate pointwise inter-frame tracking. However, in practice, due to occlusion,
areas moving outside the FOV and the noise in the measurement of the tracking,
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it is hardly possible to track the whole surface, as shown in Fig. 1. Note that the
tool-induced occluded area, typically represented by the instrument mask, can
be identi�ed if the instrument pose is known [6] or using instrument segmenta-

tion [12]. Let's say F̂n : Ucnsub
⊂ R2 → R3 is a measured scene �ow map from

the n-th frame to the (n+1)-th frame and Mc|t=n : Ucn ⊂ R2 → Scn ⊂ R3 is a
surface map of the n-th frame, where Ucnsub

⊂ Ucn is the area in tracking, Ucn

is the whole area de�ned on the canonical canvas at the n-th frame, and Scn is
the modeled 3D surface at the n-th frame. We want to estimate a surface map
Gn deforming from Mc|t=n that is consistent with the measured tracking, as:

Gn(p) = Mc|t=n (p) + F̂n(p),p ∈ Ucnsub
(2)

However, since there exists lost-of-tracking areas, the above estimation problem
is ill-posed. We propose to introduce a spatiotemporal smoothness term for reg-
ularization by assuming that the local geometric properties represented by the
derivatives of the reference map and the estimated map are similar, as:

dGn|p = Rn

(
dMc|t=n,p

)
(3)

where Rn is a rotation transformation estimated from F̂n using the method
reported in [4], as dMc|t=n,p is rotation-variant. With equation 2 and 3, we
propose a map optimization model incorporating measured tracking and geo-
metric smoothness, whose solution in the least squares sense is:

Ĝn = argmin
Gn

∥∥∥∥∥
∫
p∈Ucnsub

Gn(p)− Mc|t=n (p)− F̂n(p)

∥∥∥∥∥
2

+α

∥∥∥∥∥
∫
p∈Ucn

dGn|p −Rn

(
dM|t=n,p

)∥∥∥∥∥
2

(4)

where α is a scalar weight, which can be empirically set to 1 and remains �xed
in all the experiments, and Ĝn is the estimated surface deformed from Mc|t=n.
Accordingly, we can calculate the optimized inter-frame pointwise scene �ow
Fc|t=n : Ucn ⊂ R2 → R3 and the optical map Oc|t=n : Ucn ⊂ R2 → R2.

2.5 Map Fusion

Given an estimated map Ĝn : Ucn ⊂ R2 → Sgn ⊂ R3 deformed from the previous
map Mc|t=n de�ned in the canonical canvas and a currently observable map
within the FOV Mn+1 : Un+1 ⊂ R2 → Sn+1 ⊂ R3, we want to fuse these two
maps to depict newly appearing areas on the canonical canvas and to model the
latest appearance and deformation of the environment. However, the estimated
deformed surface Sgn may not be fully visible to the observer due to self-folding
or locating behind the canvas, even if the window does not exist. Therefore,
pretending that the window does not exist, we perform panoramic impasto for
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Sgn to only keep the areas that are visible to the observer, resulting in a map
Mgn : Ugn ⊂ R2 → Sgnsub

⊂ Sgn ⊂ R3. By fusing Mgn and Mn+1, we
uniformly model the currently and previously observed 3D structure on the

canonical canvas as Mc|t=n+1 : (Ugn ∪ Un+1) ⊂ R2 →
(
Sgnsub

∪ Sn+1

)
⊂ R3.

2.6 Surface Strain Estimation

Strain can be calculated from the relative changes of positions among points, for
which continuous pointwise tracking is necessary. With the proposed method,
we can easily compose the modeled optical �ow map Oc|t=n and the surface
map Mc|t=n for continuously tracking points of the 3D surface Sca , as:

Mca→b
= Mc|t=b ◦ Oc|t=b−dt ◦ ... ◦ Oc|t=a (5)

where Mca→b
: Uca ⊂ R2 → Sca→b

⊂ R3 represents the tracking result from
t = a to t = b, and Sca→b

is the tracked surface. Note that Sca→b
̸= Scb as Scb

may include some areas that do not exist at t = a. An accumulated scene �ow
map can be de�ned as:

Fca→b
= Mca→b

− Mc|t=a : Uca → R3 (6)

Since Mc|t=a is a homeomorphism, its inverse M−1
c

∣∣
t=a

exists. Then we can
de�ne a map from the 3D structure space to the 3D displacement space as:

K = Fca→b
◦ M−1

c

∣∣
t=a

: Sca ⊂ R3 → R3 (7)

K is indeed a 3D displacement �eld. By applying the in�nitesimal strain theory
and the vertex-wise least-squares algorithm [2], we can calculate the surface
strain using K.

3 Experiments

3.1 Datasets and Evaluation Metrics

We conducted experiments using ex vivo and in vivo binocular laparoscopic video
datasets to evaluate the performance of the proposed method from various per-
spectives, including robustness to tool-induced occlusion, surface reconstruction
accuracy in terms of the surface distance [2] in both occluded and non-occluded
areas and the capability of estimating surface strain. We made use of two pub-
licly available in vivo datasets, namely HAMLYN [10] and ENDONERF [19],
and one ex vivo dataset taken by ourselves. HAMLYN and ENDONERF do not
provide the ground truth of the 3D scene, while our ex vivo dataset utilizes
the 3D scan results as the ground truth in both the occluded and non-occluded
areas. These videos include various types of tool-tissue interaction (grasping,
traction, dissection and palpation) and camera motion (large, small and none).
Note that ENDONERF [19] provides the instrument masks directly and our ex
vivo dataset provides the instrument poses in respect to the camera, such that
the tool-induced occluded areas in both datasets can be easily identi�ed.
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3.2 Implementation Details

All the laparoscopic cameras in the datasets were calibrated, such that the im-
ages were recti�ed before processing. We followed the two-step approach in [2]
to measure the 3D structure and tracking from the images. More speci�cally, we
utilized the pre-trained models provided by RAFT-Stereo [8] for 3D reconstruc-
tion and LiteFlowNet3 [5] for 2D tracking and combined them for 3D tracking.
These noisy measurements were processed by the proposed method in an online
manner. The proposed method was implemented using MATLAB®. The code
and the ex vivo dataset are available at: https://github.com/bmpelab/trans_
window_panoramic_impasto.git.

Fig. 2. Online deformation recovery results with the reference left laparoscopic images
in the lower-right corner. Time increases from the left to the right. Red rings indicate
the locations of the forceps. 1st row: camera moving around viewing the abdomen
wall. 2nd-4th rows: various tool-tissue interaction cases, including grasping, traction,
dissection and palpation. 5th row: surface strain during the palpation of the 4th row.

4 Results and Discussion

Figure 2 shows that the proposed method successfully recovers the tissue de-
formation in various cases, including the existence of large camera motion and
various types of tool-tissue interaction (grasping, traction, dissection, palpation).
Results in Fig. 2 demonstrate that the proposed method is robust to tool-induced
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occlusion, as the structure and texture of the occluded tissue can still be recov-
ered. We quantitatively compare the deformation recovery accuracy in terms
of the surface distance among three methods: RAFT-Stereo [8], EndoSurf [22],
and the proposed one. Note that RAFT-Stereo is a stereo matching algorithm
implemented as a measurement of the 3D structure, whose results are used by
EndoSurf and the proposed method. Thus, the error of RAFT-Stereo will be
inherited. Besides, RAFT-Stereo is not robust to tool-induced occlusion. There-
fore, its accuracy in the occluded areas is not available. As shown in Table 1,
the surface distances of the proposed method in the occluded and non-occluded
areas are 0.40 ± 0.26mm and 0.63 ± 0.63mm, respectively, and are lower than
those of the EndoSurf, which are 8.19 ± 3.10mm and 2.26 ± 2.71mm, respec-
tively, meaning that the proposed online method achieves higher reconstruction
accuracy in both the occluded and non-occluded areas.

Table 1. Deformation recovery accuracy in terms of surface distance on our ex vivo
dataset (unit in millimeter)

Surface distance in non-occluded areas (↓) Surface distance in occluded areas (↓)

RAFT-Stereo [8] EndoSurf [22] Ours RAFT-Stereo [8] EndoSurf [22] Ours

0.39± 0.32 2.26± 2.71 0.63± 0.63 n.a. 8.19± 3.10 0.40± 0.26

As an online approach, the proposed method is designed for gradually mod-
eling newly appearing surfaces. The �rst row of Fig.2 shows a case where the
camera was moving around viewing the porcine abdomen wall, while the second
row shows a case where the camera was �xed, one forceps were performing trac-
tion and the other was standing by. In both cases, those areas initially outside
the FOV or occluded were modeled once they became visible to the camera.
Therefore, the proposed method is capable of continuous mapping while main-
taining the latest deformation status and appearance of the environment. Such
that we overcome the limitations of the previous SLAM-based and NeF-based
methods. However, the method is not for recovering the tissue in the perma-
nently occluded areas. That is the reason why there remained some vacant areas
in the �nal frames, as shown in Fig. 2, since these areas remained invisible to
the camera.

The �fth row in Fig. 2 visualizes the principal surface strain during the
palpation procedure in the fourth row. Though very noisy, we can identify that
the strain increases as the forceps push deeper. The calculation of strain relies on
the analysis of the relative changes of the locations of the neighboring points, for
which continuously tracking surface points is necessary but non-trivial, especially
with the existence of occlusion. Results in Fig. 2 demonstrate that the proposed
method can handle such a challenging task and successfully bridge between the
visual observation and surface biomechanical properties.
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5 Conclusion

In this article, we propose an online method named trans-window panoramic
impasto for surface deformation recovery from laparoscopic images. To realize
continuous surface mapping and tracking and to handle tool-induced occlusion,
we propose a novel problem setting where we assume a static observer depicts
the deformable and movable environment outside a window (the camera) on
a canonical canvas as surface and displacement maps. Based on such problem
setting, we propose map-based optimization and fusion for estimating the oc-
cluded and outside FOV areas and modeling the newly appearing areas. Exper-
iments using ex vivo and in vivo laparoscopic datasets were conducted. Results
demonstrate that the proposed method successfully recovers tissue deformation
in various cases with di�erent types of tool-tissue interaction (grasping, palpa-
tion, traction, dissection) and camera motion with accuracy of 0.40 ± 0.26mm
and 0.63± 0.63mm in the occluded and non-occluded areas, respectively.
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