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Abstract. Diabetic macular edema (DME) is a leading cause of vision
loss worldwide. Optical Coherence Tomography (OCT) serves as a widely
accepted imaging tool for diagnosing DME due to its non-invasiveness
and high resolution cross-sectional view. Clinical evaluation of Hyper-
reflective Foci (HRF) in OCT contributes to understanding the origins
of DME and predicting disease progression or treatment efficacy. How-
ever, limited information and a significant imbalance between foreground
and background in HRF present challenges for its precise segmentation
in OCT images. In this study, we propose an attention mechanism-based
MUlti-dimensional Semantic Enhancement Network (MUSE-Net) for
HRF segmentation to address these challenges. Specifically, our MUSE-
Net comprises attention-based multi-dimensional semantic information
enhancement modules and class-imbalance-insensitive joint loss. The adap-
tive region guidance module softly allocates regional importance in slice,
enriching the single-slice semantic information. The adjacent slice guid-
ance module exploits the remote information across consecutive slices,
enriching the multi-dimensional semantic information. Class-imbalance-
insensitive joint loss combines pixel-level perception optimization with
image-level considerations, alleviating the gradient dominance of the
background during model training. Our experimental results demon-
strate that MUSE-Net outperforms existing methods over two datasets
respectively. To further promote the reproducible research, we made the
code and these two datasets online available.
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1 Introduction

Diabetic macular edema (DME) is the leading cause of vision impairment in
patients with diabetes [8, 2, 17]. Clinical research on Hyperreflective Foci (HRF)
provides new insights into understanding the pathogenesis of DME, and offers
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directions for predicting the prognosis of DME or efficacy of treatments. Optical
Coherence Tomography (OCT), an imaging tool for the retina, improves visual-
ization of retinal microstructure, aiding in accurate disease diagnosis [9]. HRF in
OCT images are well-defined lesions with high reflectivity [1, 5, 3]. Consequently,
automated segmentation of HRF based on OCT images can facilitate quantita-
tive analysis, and improve the diagnostic performance of DME. However, the
limited information provided and the significant imbalance between foreground
and background pose challenges to its accurate segmentation. Therefore, there
is an urgent need for reliable HRF segmentation to assist ophthalmologists in
making informed clinical decisions.

Several methods have been proposed to segment HRF from OCT images,
utilizing either traditional machine learning or deep learning techniques. Oku-
wobi et al. [10] introduced an automatic segmentation method based on the
component tree, identifying regions of interest in the retina through clustering
algorithms. However, traditional machine learning methods rely on retinal layer
segmentation, which can be particularly challenging in the presence of ocular
pathologies. Wei et al. [14] proposed a lightweight network involving image pre-
processing and patch classification. Goel et al. [6] employed a patch-based strat-
egy, ensuring that the regions of interest are composed of pixels from the retinal
region, and utilized U-Net for HRF segmentation. However, these patch-based
methods may lose semantic information across the entire image, and come with
a high computational cost. Therefore, there is a necessity to explore dedicated
methods to capture more comprehensive information in HRF to address existing
challenges.

In clinical practice, ophthalmologists also need to leverage global and local
perspectives while combining consecutive OCT images for improved lesion local-
ization. Therefore, a well-designed attention mechanism may enable networks to
incorporate this clinical knowledge, potentially improving HRF segmentation. In
this work, we propose an attention mechanism-based HRF segmentation network
(MUSE-Net) that integrates multi-dimensional semantic information enhance-
ment. Our approach introduces an adaptive region-guided single-slice enhance-
ment module (SEM) for balancing local and global perspectives within individual
OCT images, and an adjacent slice-guided multi-dimensional enhancement mod-
ule (MEM) for combining information across multiple OCT images. MUSE-Net
takes multiple adjacent OCT slices as the inputs and produces a segmentation
map for the target OCT slice image. To address the foreground-background im-
balance issues, we use a joint loss function that combines pixel-level perceptual
optimisation with image-level considerations.

The main contributions are summarized as follows:

(1) We propose an attention-based multi-dimensional semantic information
enhancement network for accurate HRF segmentation. The proposed network
contains the adaptive region-guidance and adjacent slice-guidance modules, which
aim at enhancing intra-slice and inter-slice semantic information, respectively.
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Fig. 1. The overall architecture of the proposed MUSE-Net.

(2) We introduce a joint loss function that combines pixel-level perceptual
optimization with constraints on image-level similarity, to improve the segmen-
tation performance on class-imbalance samples.

(3) To promote relevant research in the field of 2D/3D HRF analysis, for
the first time, we establish two OCT datasets with HRF regions manually
annotated, and they are online available at https://github.com/iMED-Lab/

MUSEnet-Pytorch

2 Methodology

The proposed MUSE-Net comprises a selective region encoder, adjacent slice
guidance module and a semantic decoder, as shown in Fig. 1. The selective
region encoder consists of five layers with convolution followed by SEM, while
the semantic decoder has the five symmetric layers with upsampling followed
by convolution. The adjacent slice guidance module contains five MEMs located
at skip connections between the encoder and the decoder. A joint loss function
based on pixel-level perceptual optimization with image-level considerations is
applied for network training. These are detailed as follows.

2.1 Multi-dimensional Semantic Information Enhancement

Single-slice Enhancement Module (SEM): The small size and limited in-
formation of HRFs in OCT images pose challenges for accurate segmentation. To
extract richer semantic information, we introduce an SEM module with region
sensitivity. This module softly allocates regional importance based on the distri-
bution of HRF across different areas of the image, thereby enhancing semantic
information in single images.

Specifically, SEM comprises two main components: regional representation
module (RRM) and regional selection module (RSM), as depicted in Fig. 2. RRM
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Fig. 2. Schematic diagram of the proposed SEM module.

consists of four paralleled patch-wise squeeze excitation adapters, which aims at
capturing regional representations with different sizes. The input feature map
X ∈ RH×W×C of each patch-wise squeeze excitation adapter is first squeezed to
S × S × C by adaptive average pooling, where S are set as 2, 5, 10 and 20 re-
spectively for the four branches. To obtain the significance weight of each patch,
the squeezed feature map is then activated through recalibration convolution,
which adopts two cascaded convolutional layers. At the end of each branch, un-
pooling is applied to the activation map to reconstruct to the dimensions of the
input feature map. Finally, the outputs of the four branches are concatenated
to produce multi-scale regional representation space P ∈ RC×4×H×W . In order
to achieve prediction fusion in a data-driven manner, RSM first employs global
average pooling to squeeze the input feature map, then 1 × 1 convolution with
softmax is applied to obtain 4-channel adaptive region-sensitive weights:

W = Softmax(Conv1× 1(GAP(X))), (1)

whereW ∈ R4×1. The final region-sensitive channel attention weights are achieved
by applying sigmoid after matrix multiplication of the multi-scale regional repre-
sentation space P and region-sensitive weights W . After region-sensitive channel
attention weighting, the weighted image is combined with the input image via
residual connections, which can be expressed as: X ′ = X + (P ·W )�X.

Multi-dimensional Enhancement Module (MEM): To exploit the multi-
dimensional contextual information across consecutive slices, we introduce the
MEM inspired by [13]. It comprises two components: channel attention module,
and spatial attention module, as shown in Fig. 3. We define remote feature as the
combined refined feature maps from adjacent slices, improved by SEM within
the same encoder layer, denoted as Xrem = [X ′N−1, X

′
N , X

′
N+1] ∈ R3×C×H×W ,

and target feature as Xtar = X ′N ∈ RC×H×W . Here, N is the sequential num-
ber of the target OCT image in the volumetric data. In the channel attention
module, patch pool modules squeeze the remote and target features, followed by
recalibrated convolutions to activate the pooled features. This is implemented
as:

F (X) = Conv3× 3(RELU(Conv3× 3(GAPS×S(X)))), (2)
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Fig. 3. Schematic diagram of the proposed MEM module.

Here, S is empirically set to 10. Matrix multiplication and softmax operation
are employed to obtain inter-slice attention signals:

Ssatt = softmax(F (Xtar) · F (Xrem)), (3)

The inter-slice attention signal is applied to long-range features F (Xrem), ac-
cording to Ssatt · F (Xrem). An activation function, a 3× 3 convolution, unpool-
ing, and normalization are then applied to capture nonlinear interactions among
channels.

Similar to channel attention block, spatial attention block adopts channel
pool, recalibrated convolution, matrix multiplication, and softmax operations to
generate the inter-slice attention signal. Finally, the input undergoes pixel-wise
multiplication sequentially with the channel attention map and spatial attention
map, yielding a refined feature map enriched with multi-dimensional contextual
information.

2.2 Joint loss

In medical image segmentation tasks, imbalance between foreground and back-
ground can lead to background regions of large portion dominating the gradient
during training. To address this challenge, we propose a joint loss function aimed
at mitigating easy sample’s gradient dominance during model training.

Pixel-level perceptual optimization loss: We introduce a perceptual opti-
mization loss (LPO) function, using (1− p)γ to estimate weights for challenging
samples, where p is the predicted probability, and γ is the adjustment factor [18].
Normalizing the loss distribution without altering the sum is achieved with Z =∑

i(1−pi)
γ l(pi,yi)∑

i l(pi,yi)
. Here, pi is the predicted probability, yi is the label, and l(pi, yi)

is the cross-entropy loss for class i. To address early inaccurate prediction issues,
the loss function is dynamically weighted based on an annealing function:

LPO =
∑
i

[
1

Z
· (1− pi)

γ + ϕ (t) ·
(

1− 1

Z
· (1− pi)

γ

)]
l(pi, yi), (4)
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where ϕ(·) represents the annealing function relative to the current training
step t ∈ [0, 10000], and ϕ(t) is a monotonic decreasing function: ϕ(t) = 0.5 · (1 +
cos( t

10000π )). During the training, confidence in estimating weights for challeng-
ing samples improves gradually, allowing the LPO to assign larger weights to
difficult samples.

Image-level consideration loss: Perceptual optimization loss, focused on
pixel-level classification, may under-perform in class-imbalanced tasks. In con-
trast, the Dice coefficient loss proves more robust in such scenarios. Dice coeffi-
cient measures the overlap between model predictions and targets, with values
closer to 1 indicating better segmentation. The Dice coefficient loss function [4]
is expressed as:

LDice = − 2

K

K∑
k=1

[
I∑
i=1

uki v
k
i∑J

j=1(ukj + vkj )

]
, (5)

where u ∈ RI×K is the output of softmax activation, v ∈ RI×K is the one-hot
encoding of the gold standard, I is the number of pixels in the training batch,
and K is the number of classes.

Finally, combining LDice and LPO in a hybrid manner, LTotal = LDice +
LPO, not only accelerates convergence but also enhances the overall stability of
network training.

3 Experiments and results

3.1 Datasets

The segmentation performance of MUSE-Net is evaluated over two in-house
OCT image datasets. HRF-1 consists of 140 OCT volumes acquired using the
Heidelberg OCT system (Heidelberg Engineering, Heidelberg), capturing images
within 4.5× 4.5 mm2 and 6× 6 mm2 areas centered at the fovea. HRF-2 con-
sists of 140 OCT volumes obtained using the SVision OCT system (SVision
Imaging), capturing images within a 6×6 mm2 area centered at the fovea. Con-
sidering the majority of HRFs spanning 2-4 B-Scans [15], this study randomly
selects 8 consecutive B-Scans from each OCT volume for manual annotation.
Each dataset yields 1,120 images with HRF segmentation ground truth. A 3-fold
cross-validation approach is adopted to evaluate the performance and ensure that
OCT images from the same individual volume do not simultaneously appear in
the test or training set. The HRF areas were initially annotated by one senior
ophthalmologist and later reviewed and refined by another senior ophthalmolo-
gist. All images were acquired with regulatory approvals and patient consent as
appropriate, following the Declaration of Helsinki.

3.2 Implementation details

Our approach is implemented using the PyTorch framework with NVIDIA GeForce
GTX 3090. The model is trained with the SGD optimizer, and the Nesterov mo-
mentum term is set to 0.99. The initial learning rate is 0.01, and the model is
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Table 1. HRF segmentation results with standard deviations of different methods.

Methods
HRF-1 HRF-2

Dice(%) IOU(%) Sen(%) Pre(%) Dice(%) IOU(%) Sen(%) Pre(%)

U-Net [11] 65.04.4 54.84.3 70.04.7 63.73.8 66.51.0 53.91.1 69.91.5 69.62.5
U-Net++ [19] 65.44.0 54.83.8 72.13.4 63.04.1 66.141.1 53.31.1 70.31.8 68.60.4
Res U-Net [12] 64.94.8 55.14.5 63.55.1 70.14.0 64.51.8 51.81.9 62.93.2 73.11.1
SW-3DUNet [15] 55.34.0 40.94.2 69.02.5 49.34.8 46.54.6 31.73.6 51.27.1 49.98.7
SA-Net [16] 65.13.6 55.23.3 63.84.8 70.31.9 65.50.5 52.80.4 67.91.3 70.01.3
nnUNet [7] 67.82.5 56.71.9 73.26.0 74.08.7 68.61.4 56.11.6 71.70.8 73.92.5
MUSE-Net 72.41.6 60.62.2 76.73.5 75.11.0 73.21.0 59.61.3 72.71.3 77.41.2

trained for 300 epochs with a batch size of 2. A polynomial learning rate adjust-
ment strategy is employed, with the momentum set to 0.9. The nnUNet [7] is
utilized for data augmentation during training.

3.3 Experimental results

To benchmark our model’s performance, we compared it with several state-of-
the-art methods in the medical image segmentation field, including U-Net [11],
U-Net++ [19], Res U-Net [12], SW-3DUNet [15], SA-Net [16], and nn-UNet [7].
We used Dice coefficient (Dice), intersection over union (IoU), precision (Pre),
and Sensitivity (Sen) to evaluate the segmentation performance.

Comparison with state-of-the-arts: The quantitative results are reported in
Table 1. It can be seen that the proposed method surpasses the state-of-the-art
ones in HRF segmentation with large margins. Specifically, our method achieves
outstanding performance on the test set for HRF-1, with a Dice of 72.4%, an
IOU of 60.6%, a Sen of 76.7% and a Pre of 75.1%, and for HRF-2, with a Dice
of 73.2%, an IOU of 59.6%, a Sen of 72.7% and a Pre of 77.4%, respectively.

The proposed method performs well in identifying complete regions of HRF
and avoiding false segmentations, as verified in Fig. 4. In contrast, the state-of-
the-art methods, such as U-Net [11] and SA-Net [16], over-segment the back-
ground inside and outside the retina into HRF. Especially in areas with complex
shapes where HRF converges, it is easy to fail to identify them correctly. Both
the quantitative and qualitative results demonstrate that the proposed method
has achieved state-of-the-art performance in accurately segmenting HRF.

Clinical application: To better demonstrate the clinical value of the pro-
posed method, we show an example of a visual comparison of HRF in a patient
with DME undergoing treatment, as shown in Fig. 5. Our method enables the
extraction and precise computation of pathological quantification information,
including the distribution and quantity characteristics of HRF, such as quan-
tity (Q) and volume (V ). This offers crucial insights into the spatio-temporal
dynamic changes of lesions before and after treatment.
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Fig. 4. Illustrative HRF segmentation results. The green arrow indicates under-
segmentation, and the yellow arrows are over-segmentation.

Fig. 5. An example of a visual comparison of HRF and its relevant parameter mea-
surements in a patient with DME before and after the treatment. (a) OCT B-scan
with segmentation results. (b-c) 3D visualization of HRF in an OCT volume, at the
patient’s initial visit and six months later (after treatment). For this case, the number
parameters (QNS , QHD, QHC), and volume parameters (VNS , VHD, and VHC) are also
calculated based on the segmentation.

Ablation study: To validate the effectiveness of multi-dimensional seman-
tic information enhancement in improving HRF segmentation, we systemati-
cally integrate specific modules into the training framework. Sequentially, we
introduce M1: joint loss, M2: single-slice semantic enhancement, and M3: multi-
dimensional semantic enhancement into the backbone. Table 2 summarizes the
experimental results. They show a progressive enhancement in the network per-
formance for HRF segmentation by incorporating different modules and compo-
nents. The complementary local information, global contextual information and
class imbalance handling of these modules further boosts the segmentation per-
formance of the network. Despite minor Sen and Pre coefficients variations on the
HRF-1 dataset, the optimal Dice score (72.4%) was achieved when considering
both Sen and Pre coefficients.
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Table 2. Ablation study of our MUSE-Net for HRF segmentation.

Methods
HRF-1 HRF-2

Dice(%) IOU(%) Sen(%) Pre(%) Dice(%) IOU(%) Sen(%) Pre(%)

Backbone 67.82.5 56.71.9 73.26.0 74.08.7 68.61.4 56.11.6 71.70.8 73.92.5
Backbone + M1 68.91.7 58.42.3 77.42.1 72.11.2 68.90.4 56.40.4 72.10.3 74.20.8
Backbone + M2 69.13.1 58.93.4 78.52.1 71.84.1 69.10.7 56.61.1 71.81.7 75.01.5
Backbone + M3 71.52.2 60.12.8 74.83.1 75.72.3 71.60.8 58.01.0 72.01.3 75.00.5
MUSE-Net 72.41.6 60.62.2 76.73.5 75.11.0 73.21.0 59.61.3 72.71.3 77.41.2

4 Conclusions

This study introduces a novel approach to tackle the challenges of HRF segmen-
tation in OCT images. It incorporates attention-based multi-dimensional seman-
tic information enhancement modules and class-imbalance-insensitive joint losses
for accurate HRF segmentation. The findings indicate that both single-slice and
multi-dimensional semantic enhancement modules, along with joint losses, im-
prove HRF segmentations. Compared to the state-of-the-arts, the proposed ap-
proach exhibits superior performance. The application of the proposed method
to a clinical image also shows significant changes in the relevant parameters that
may indicate the treatment efficacy. Nonetheless, further research is needed to
validate the effectiveness of the proposed method in large-scale clinical studies.
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