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Abstract. Automated diabetic retinopathy (DR) lesion segmentation
aids in improving the efficiency of DR detection. However, obtaining le-
sion annotations for model training heavily relies on domain expertise
and is a labor-intensive process. In addition to classical methods for alle-
viating label scarcity issues, such as self-supervised and semi-supervised
learning, with the rapid development of generative models, several stud-
ies have indicated that utilizing synthetic image-mask pairs as data aug-
mentation is promising. Due to the insufficient labeled data available to
train powerful generative models, however, the synthetic fundus data suf-
fers from two drawbacks: 1) unrealistic anatomical structures, 2) limited
lesion diversity. In this paper, we propose a novel framework to syn-
thesize fundus with DR lesion masks under limited labels. To increase
lesion variation, we designed a learnable module to generate anatomi-
cally plausible masks as the condition, rather than directly using lesion
masks from the limited dataset. To reduce the difficulty of learning in-
tricate structures, we avoid directly generating images solely from lesion
mask conditions. Instead, we developed an inpainting strategy that en-
ables the model to generate lesions only within the mask area based
on easily accessible healthy fundus images. Subjective evaluations indi-
cate that our approach can generate more realistic fundus images with
lesions compared to other generative methods. The downstream lesion
segmentation experiments demonstrate that our synthetic data resulted
in the most improvement across multiple network architectures, surpass-
ing state-of-the-art methods.

Keywords: DR lesion segmentation - Labeled data scarcity - Data aug-
mentation - Image-mask pair synthesis - Diffusion model
1 Introduction

Diabetic retinopathy (DR) is one of the most widespread ophthalmic disor-
ders, with global DR prevalence projected to reach approximately 160 million
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Fig. 1. Comparison of the pipeline for traditional conditional generative approaches
and the proposed method.

by 2045 [14]. Since DR can lead to a heightened risk of irreversible vision im-
pairment, early detection and appropriate treatments of DR hold great clinical
value [10]. The screening of DR typically involves analyzing DR lesions using
fundus images, including microaneurysms (MAs), hemorrhages (HEs), soft ex-
udates (SEs), and hard exudates (EXs) [12]. Therefore, automatic DR lesion
segmentation is an important computer-aided diagnosis application with the po-
tential to enhance the efficiency and accuracy of clinical DR screening [5]. With
the advancement of deep learning, many approaches based on deep neural net-
works [5,6, 8,9, 16] have been proposed to tackle the DR lesion segmentation
task, but they suffer from insufficient segmentation accuracy. This is because
training models with satisfactory performance demands abundant labeled data.
However, the public availability of annotated datasets for DR lesions remains
scarce, with even the largest benchmark FGADR [21] comprising only 1,741 an-
notated images. Such limited availability of annotated data poses considerable
challenges for training well-performing segmentation methods.

Recently, generative Al has gained significant popularity, especially diffusion
models [7]. Empirical studies suggest the utilization of synthetically generated
labeled data for data augmentation exhibits promising potential to alleviate the
paucity of publicly available training data for segmentation task [2,3,13,17]. How-
ever, in the domain of DR lesion segmentation, leveraging generative models to
produce diverse and anatomically plausible synthetic labeled data is hindered by
the limited availability of public data, giving rise to two critical challenges: 1) As
illustrated in fig. 1, during inference phase, conventional generative approaches
directly leverage the limited lesion masks available in the training data to guide
the image synthesis process. However, the scarcity of segmentation masks in
publicly available datasets poses a considerable challenge for generating diverse
synthetic data. 2) As shown in fig. 1 traditional generative methods directly em-
ploy DR lesion segmentation annotations as conditions, attempting to generate
complete fundus images containing both lesion regions and complex physiological
structures in a single step. However, this approach demands substantial train-
ing data, as training on limited public datasets can lead to a lack of realism in
generated physiological structures outside lesion areas.

Therefore, we proposed a two-stage realistic DR fundus image synthesis
method, which is capable of synthesizing diverse DR images with realistic phys-
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iological structures. In stage I, to synthesize anatomically plausible DR lesion
masks, our framework utilizes the anatomical structure information from healthy
fundus images, including the region of interest (ROI), optic disc (OD), and vessel
(VE), to guide the synthesis of the lesion masks. In stage II, to alleviate the chal-
lenge of limited training data, we propose a Learnable Training Augmentation
(LTA) module. This module enables augmenting our training data in a learnable
manner during the training of the second stage. Simultaneously, to mitigate the
challenge of generating complex physiological structures in fundus images, as
illustrated in fig. 1, we devise an inpainting approach. Our approach generates
DR lesions within the masked regions of readily available healthy fundus images,
thereby circumventing the need to synthesize complex physiological structures.

In this study, our contributions are as follows: 1)We highlight two key draw-
backs in generating paired DR lesion segmentation data, stemming from limited
training data: insufficient lesion diversity and difficulties in synthesizing complex
physiological structures. 2) To address the paucity of training data and two stem-
ming drawbacks, we propose a two-stage approach for DR image generation that
can synthesize diverse images with realistic physiological structures. 3) We per-
form comprehensive experiments validating the realism of our generated images
and their efficacy in boosting downstream segmentation performance. Compared
to state-of-the-art approaches, our method achieves the most realistic generation
and highest segmentation gains.

2 Method

As illustrated in fig. 2, our approach consists of two stages that enable the
synthesis of lesions at specified locations on healthy fundus images. In stage I,
leveraging structural information as conditional inputs, we employ a diffusion
model to generate diverse and anatomically plausible lesion masks. In stage II,
guided by these generated masks, we task the conditional diffusion model to
focus on generating lesions within the designated areas, avoiding the need to
generate complex physiological structures. Concurrently, we introduce the LTA
module, which enables learnable augmentation of the training data used in stage
IT training.

2.1 Structure Guided Mask Synthesis

Inference. The distribution and structure of DR lesions on fundus images are
closely related to their structures, namely the ROI, OD, and VE [18]. As illus-
trated in fig. 2, in the inference phase of the first stage, to obtain anatomically
plausible lesion masks ¢, we utilize a conditional diffusion model, leveraging the
structures m as to generate diverse and anatomical coherent lesion masks ¢ from
Gaussian noise yr.

Training. For the training of this conditional diffusion model, the forward pro-
cess is the same as the unconditional diffusion model. Through the Markov
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chain, gaussian noise is gradually added to the original image y, for a total of T’
timesteps, this process can be formulated as q(y1.7|yo):

qWelyi—1) = N(ye; V1 — Beye—1, BeI)

L (1)
a(yrrlye) = [T al(welye—)
t=1
Where g; is the schedule-defined constant, t denotes the timestep and y; indicates

the noised image at timestep t. With eq. (2), the corresponding y; at any timestep

t can be effectively sampled. Where a; =1 — f; and &, := Hz;lai

yr = Vayo + V1 — ae e ~ N(0,1) (2)

Stage I: Conditional DR Lesion Maps Synthesis

Fig. 2. An image to illustrate our two-stage method: Conditional lesion map generation
and conditional image inpainting.

In the reverse process of training, sampled 3, € R *W*C is fed into the network,

while the structure s € R¥*W will be fed into the network as a condition.
Therefore, the model is trained by minimizing the loss Lc.ondition between the
sampled noise € and the noise €y (z¢, s) estimated by network eg. Where the loss
function Le.ondition 18 defined as follows:

»Ccondition - Et,z,s[” € — 60(%7 S) H] (3)

2.2 Mask-guided Lesion Inpainting

Inference. In the inference phase of the second stage, to circumvent the need
for the model to generate complex physiological structures, we employ the gener-
ated lesion masks as guidance, allowing the conditional diffusion model to focus
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solely on generating lesions within the masked regions. Specifically, as shown
in fig. 2, we first merge the generated four channel lesion masks § € RH>*W x4
into a single binary mask m € R#*W. This mask m determines the regions
that need to be modified in the healthy image x. With the well-trained inpaint-
ing model, we can generate the image with lesions &, where the region outside
of m is the same as that of x and the region inside m contains corresponding
lesions generated based on the four channel lesion maps. We follow [15] and
use spatially adaptive normalization in the model architecture, This module can
incorporate the masks as conditional inputs into the network decoder and guide
the conditional generation.
Training. Obtaining a satisfactory inpainting model to inpaint lesions on the
healthy image requires substantial data, yet public datasets for DR lesion seg-
mentation are limited. Even the largest dataset, FGADR [21], contains only
1,741 images with lesion annotations. To enable the inpainting model to achieve
effective performance with limited data, we devise the Learnable Training Aug-
mentation, tailored to the characteristics of our inpainting approach, which can
augment the for the training of inpainting model in a learnable manner.
According to the unique characteristics of the inpainting method, for each
(x,y,m) in Our training dataset D = {2, y™, m™}, the region of x to be learned
is determined by m, where m € R¥*W = fuse(y € R#*W>4), For each channel
c of lesion map y, which is denoted as y. can be viewed as a combination of j
connected regions r, where y. = {r;|j = 1,2,3,...J}. Therefore, an approach to
achieve data augmentation is, while training with each data pair (z,y,m), we
randomly drop a proportion p of connected regions in y. Thus, by modifying y,
we can obtain new data pairs (, Ynew, Mnew ) for training. However, p as a hyper-
parameter, manually searching for the optimal value of it is not reasonable and
time-consuming. Therefore, we follow the insight of Bayesian optimization [4],
optimizing p every epoch based on the LPIPS loss calculated during validation.
Thus, the value of p can be upgraded and the LTA module can enable learnable
augmentation for our training data with the optimized p. The approach can be
formulated as the following equation:

p" = argmin f(p) (4)

p€(0.1,1)
Where p stands for the dropping ratio and f(r) means the LPIPS loss calculated
in validation. The range of p is set to (0.1,1). In the forward process of training,
we generate a noisy image z; based on the original image xg, and then replace
the non-lesion regions of x; with the original image xq according to the mask m,
resulting in the final noised image x;. This process can be formulated as follows:

Ty = Vaxg + V1 — aee ~ N(0,T)

=T Om+x9® (1 —m)

(5)

Where the e denotes the added Gaussian noise. In the reverse process of inpaint-
ing training, the noised image z; is input into the network encoder ¢, while the
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lesion mask y € R¥*W*4 i5 inserted into the network decoder D as a condi-

tion. The estimated noise is indicated as D(e(z),y). The loss function of the
inpainting model is as follows:

Linpainting = Etzo.mylll € = D(e(),y) |] (6)

3 Experiments

3.1 Implementation Details

Table 1. Comparison of image quality for different data generative methods.

Methods Objective Metrics Subjective Metrics
LPIPS (]) Accuracy () Recall () Precision (|) Fl-score ({)
RetinaGAN [§] 0.594 0.800 0.625 1.000 0.769
SDM [15] 0.572 0.700 0.714 1.000 0.833
Ours 0.523 0.550 0.545 0.600 0.571

Datasets. Our experiments were conducted on two public DR lesion segmenta-
tion datasets, FGADR [21] and OIA-DDR |[11]. The FGADR dataset consists of
101 healthy images and 1741 images with lesion labels. The OIA-DDR dataset
includes data for DR classification and DR lesion segmentation, with 757 im-
ages containing DR lesion annotations. The structure of the training images is
obtained by fine-tuned SAM. To evaluate our method’s effectiveness, we divided
the FGADR dataset into 975 training, 244 validation, and 522 test images. For
OIA-DDR, we split it into 383 training, 149 validation, and 225 test images. All
images were margin-cropped and resized to 1024 x 1024.
Inpainting Training Protocol. During the training phase of our generative
model. For each dataset, we utilized the training set for training and the val-
idation set to compute the LIPIS loss between the generated images and the
original images for validation. We set the diffusion step to 1000, batch size to 4,
learning rate to 0.0001, and employed AdamW as the optimizer. Each stage of
training the generative model was conducted on NVIDIA RTX 4090 GPUs.
Segmentation Experimental Settings. In this work, we conduct a compar-
ative evaluation of our proposed approach against various data augmentation
techniques across two different segmentation networks. The comparative meth-
ods encompass the traditional augmentation technique CutMix [19], as well
as three data generation approaches: RetinaGAN [8], SDM [15], and Polyp-
DDPM [2]. Two segmentation networks are Dense UNet [1], a medical segmen-
tation network designed based on CNN, Trans2U-Net [20], a network specifically
tailored for Retinal Lesion segmentation.

For the comparative experiments setting in table 2, each network’s baseline
and CutMix [19] methods are trained using the original training set. For the
three generative approaches and the proposed approach, we generate the same
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number of data as the training sets: 975 images for FGADR and 383 images for
OIA-DDR. We then combine the generated data with the original training set
to form new training sets for these methods, and the segmentation models are
trained on these new training sets.

Generated Masks Healthy Images

Inpainted Images

| . Microaneurysms (MAs) . Hemorrhages (HEs) O Hard Exudates (EXs) . Soft Exudates (SEs) |

Fig. 3. Display of generated fundus images with lesions, healthy images in the first
row, generated lesion maps in the second row, and the results of inpainting in the third
row. The legend at the bottom indicates the mask color for four types of retinal lesions.

3.2 Image Quality Evaluation

To validate the realism of the images generated by our method, we evaluate it
against two other well-performing methods using both objective and subjective
metrics. As shown in table 1, for objective evaluation, we employ the LPIPS
as the evaluation metrics, and our method outperforms the other two methods.
For the subjective evaluation, we randomly selected 40 images for each method,
with 20 real images and 20 generated images. Professional ophthalmologists are
tasked to discriminate which image is generated. table 1 presents the Accu-
racy, Precision, Recall, and F1 scores for this subjective assessment. The results
demonstrate that the synthetic images produced by our approach exhibit the
highest degree of realism, most closely resembling the real data distribution,
thereby posing significant challenges for discrimination.

3.3 Qualitative Analysis

To further illustrate the image quality of our proposed method, we present visu-
alization results in fig. 3, where the left three columns and right three columns
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Table 2. Comparison of different data augmentation methods for enhancing three
lesion segmentation baselines.

FGADR [21] OIA-DDR [11]
MA HE EX SE Mean MA HE EX SE Mean
Dense UNet [1] 25.9 52.4 52.9 32.0 40.8 25.1 45.3 53.3 19.0 35.7

Methods

+Cutmix [19] 25.2 55.4 58.8 33.3 43.2 (+2.4)24.3 46.0 58.0 19.1 36.8 (+1.1)
+Polyp-DDPM [2]|28.5 57.0 57.3 32.2 43.8 (+3.0) |27.4 48.4 56.2 18.3 37.6 (+1.9)
+SDM [15] 28.3 58.5 60.3 35.5 45.7 (+4.9)|27.1 49.8 58.3 19.5 38.7 (+3.0)

+RetinaGAN [8] [26.5 57.8 59.1 33.2 44.2 (+3.4)26.3 48.2 584 19.1 38.0 (+2.3)
+Ours (w/o LTA) |27.9 59.2 60.2 34.8 45.5 (+4.7) [28.4 51.6 61.3 21.1 40.6 (+4.9)

+Ours 29.0 61.1 61.8 37.9 47.5 (+6.7)30.6 53.9 63.9 23.7 43.0 (+7.3)
Trans2U-Net [20] |32.7 66.0 61.4 35.8  49.0 |32.6 53.7 547 41.3 456

+Cutmix [19] 32.4 66.8 63.1 36.3 49.7 (+0.7)|32.8 54.9 56.2 41.6 46.4 (+0.8)
+Polyp-DDPM [2]|33.2 67.9 64.3 36.6 50.5 (+1.5)|33.4 56.0 55.8 41.8 46.8 (+1.2)
+SDM [15] 33.4 68.5 65.3 37.4 51.2 (+2.2)|33.1 56.9 57.3 42.6 47.5 (+1.9)

+RetinaGAN [8] [31.9 67.2 64.8 36.5 50.1 (+1.1)|32.7 55.8 58.4 42.3 47.3 (+1.7)
+Ours (w/o LTA)|32.7 69.4 65.8 38.0 52.0 (+3.0) |34.6 58.2 59.7 43.9 49.1 (+3.5)
+Ours 33.9 72.1 67.1 39.6 53.2 (1+4.2)|36.2 60.4 61.1 45.8 50.9 (+5.3)

indicate the images produced by our models trained on FGADR and OIA-
DDR datasets, respectively. As shown in fig. 3, our method generates diverse
and anatomic plausible masks. Subsequently, our method inpaint lesions within
masked regions while preserving the complex retinal physiological structure.
Moreover, the distinction between lesion classes is noticeable.

3.4 Downstream Lesion Segmentation Task

The Dice scores of the downstream segmentation result are presented in table 2.
Our proposed method consistently outperforms other data augmentation meth-
ods in enhancing the segmentation performance across two networks. Specifi-
cally, on the FGADR dataset, our method improved the performance of Dense
UNet by 6.7%, surpassing the second-best method, SDM, by 1.8%. Moreover, our
method enhances Trans2U-Net gain a 4.2% improvement, surpassing the second-
best method, SDM, by 2.0%. On the OIA-DDR dataset, our method resulted in
a 7.3% performance gain for Dense UNet, surpassing the second-best method,
SDM, by 4.3%. Furthermore, our method contributed to a 5.3% enhancement for
Trans2U-Net, surpassing the second-best method, SDM, by 3.4%. As illustrated
in table 2, we conducted ablation experiments to evaluate the effectiveness of
the LTA module. Our experimental results demonstrate that the LTA module
consistently improves the performance of segmentation models on both of the
two datasets.

4 Conclusion

In this work, we underscore two critical limitations in generating paired DR
lesion segmentation data when faced with scarce training data and stemming
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drawbacks: The lack of lesion variability and the challenges in synthesizing intri-
cate physiological structures. To mitigate the limitations of data scarcity in DR
lesion segmentation, we proposed a novel pipeline that can transform healthy
fundus images into realistic lesion-containing images under limited public data.
The extensive experiment results on two DR lesion segmentation datasets and
evaluation of the image quality of different generative methods demonstrate that
our method outperforms others in terms of both image quality and boosting the
performance of segmentation models.
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