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Abstract. This study explored the application of implicit neural rep-
resentations (INRs) to enhance digital histopathological imaging. Tradi-
tional imaging methods rely on discretizing the image space into grids,
managed through a pyramid file structure to accommodate the large
size of whole slide images (WSIs); however, the continuous mapping ca-
pability of INRs, utilizing a multi-layer perceptron (MLP) to encode
images directly from coordinates, presents a transformative approach.
This method promises to streamline WSI management by eliminating
the need for down-sampled versions, allowing instantaneous access to any
image region at the desired magnification, thereby optimizing memory
usage and reducing data storage requirements. Despite their potential,
INRs face challenges in accurately representing high spatial frequency
components that are pivotal in histopathology. To address this gap, we
introduce a novel INR framework that integrates auxiliary convolutional
neural networks (CNN) with a standard MLP model. This dual-network
approach not only facilitates pixel-level analysis, but also enhances the
representation of local spatial variations, which is crucial for accurately
rendering the complex patterns found in WSIs. Our experimental find-
ings indicated a substantial improvement in the fidelity of histopatholog-
ical image representation, as evidenced by a 3-6 dB increase in the peak
signal-to-noise ratio compared to existing methods. This advancement
underscores the potential of INRs to revolutionize digital histopathology,
offering a pathway towards more efficient diagnostic imaging techniques.
Our code is available at https://pnu-amilab.github.io/CINR/
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1 Introduction

Deep neural networks have considerably advanced complex imaging tasks across
various domains of artificial intelligence owing to their robust representational
⋆ Corresponding author: mkim180@pusan.ac.kr
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abilities. Implicit neural representations (INRs) have emerged as a popular al-
ternative to traditional explicit frameworks that discretize the image space into
rectangular grids. This method employs neural networks as representation func-
tions, parameterizing (encoding) the signal of interest by capitalizing on their
capacity for functional approximation. A multi-layer perceptron (MLP) is com-
monly used for generating pixel (or voxel) values as outputs, using coordinates
as inputs [10, 7, 4].

This study was based on the hypothesis that INRs could lead to substantial
advancements in digital histopathological imaging. Histopathology examination
is essential for a definitive diagnosis based on biopsy samples. The advent of
digital scanning technology has enabled the transformation of tissue samples on
glass slides into whole-slide images (WSIs), facilitating high-resolution exami-
nations at various magnifications. Owing to the high resolution and substantial
size of these images, typically several gigabytes each, a pyramid file structure
was adopted for efficient management and processing. This file structure incor-
porates multiple layers, each of which is a down-sampled version of the full-
resolution image. Standard software typically loads a low-resolution layer to
enable rapid interactions. Upon zooming in, the system dynamically retrieved
the high-resolution tiles from the corresponding layer of the pyramid.

INRs function as continuous mappings within a continuous domain, allowing
them to interpolate values between pixels. Consequently, the resolution-agnostic
property of INRs has the potential to supersede the traditional pyramidal for-
mat of WSIs, which requires the storage of additional down-sampled versions
and the intricate management of multiple tiling positions and resolutions. This
could reduce the time and memory required to access an image at any magnifi-
cation level, resolution, or specific local region of interest. Generating an image
requires constructing a set of the desired pixel coordinates and inputting them
into a network. Moreover, INRs have shown promise for memory-efficient image
compression, suggesting a pathway for representing high-resolution pathologi-
cal images with fewer network parameters, thereby reducing storage and data
transfer demands[1, 8, 11, 2].

However, the principal challenge in applying INRs to pathological imaging is
their limited representational capacity for high-frequency spatial components[3,
12, 13]. These components are proportionally more prominent in WSIs than
in standard natural images due to the presence of intricate cellular patterns
and microorganisms as small as a few micrometers, such as Helicobacter pylori.
Numerous studies have attempted to reconstruct high-frequency patterns using
publicly available natural-image datasets. Some studies have demonstrated that
frequency encoding, which involves mapping Cartesian coordinates to a high-
dimensional space using a sinusoidal pattern and feeding them into a network,
can facilitate the learning of complex details more effectively. A technique known
as parameter encoding has shown remarkable effectiveness by allowing trainable
parameters to encode the coordinates[12]. An alternative method involves trans-
forming the standard activation function into a sinusoidal function, leveraging
its periodicity to capture fine image details[9]. Other proposed methods include
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Fig. 1. (A) Fully Connected and Convolutional Layers: These layers are interchange-
able if the convolutional layer has a kernel size of 1× 1. The kernel values correspond
to the weights in the fully connected layer. (B) Our Convolutional Implicit Neural
Representation (CINR) Model: The collection of feature vectors from all target pixels
is represented as a 3D tensor. This tensor is divided into multiple patches, with each
patch processed by the model. The processing can occur in one of two ways: 1) treating
all feature vectors within a patch as a batch, or 2) processing the 3D patch directly.
In the model, each rectangle box represents a fully connected layer, and each cube box
represents a convolutional layer.

decomposing an image into multi-resolution components, with each component
represented by a distinct network, and then combining all representations[3, 13].
However, our empirical examinations of WSIs indicate that these methods are
still inadequate for restoring complex signals that convey critical diagnostic in-
formation.

To address these challenges, we introduce a pioneering INR approach that
employs the latest coordinate encoding strategy using hash tables at various
resolutions. This model was augmented by integrating an auxiliary CNN with
the MLP. This dual-network approach extends contextual analysis beyond indi-
vidual pixels, allowing for a more accurate determination of pixel values. When
a batch containing all pixels from a single image is input into only the MLP
flow, the process can be likened to an image undergoing a series of multi-channel
convolutions with merely 1 x 1 kernel size. The novel auxiliary flow is composed
of a sequence of convolutions with 3 x 3 kernel sizes, allowing for the engagement
of not only the target pixel position, but also adjacent positions, thereby adeptly
managing local spatial fluctuations. Our experimental results highlight a signif-
icant improvement in high-frequency restoration within pathological images.

2 Method

2.1 Position encoding

The universal approximation theorems suggest that neural networks can be used
to represent functions. Recent studies demonstrated that a simple MLP can
reconstruct a continuous 2D image or 3D volumetric function by mapping ar-
bitrary coordinates to their corresponding values. However, it has been shown
that MLPs exhibit a spectral bias when fed raw input coordinates, leading to a
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diminished ability to represent high spatial frequencies[12]. To mitigate this, po-
sitional encoding has been introduced, enabling networks to effectively capture
high-frequency content.

In our implementation of pathological imaging, we leveraged a multi-resolution
hash grid-encoding method[6], which is currently considered to be state-of-the-
art based on various restoration metric scores. This method establishes L 2D
grids across the domain, with each grid representing a level of resolution. At
level l, the grid divides the full image domain into Nl ×Nl. The progressive Nl

between the coarest and fineast resolutions was determined as Nl = ⌊Nmin · bl⌋
and b = e(lnNmax−lnNmin)/(L−1). This method then encodes each grid point using
a hash table of size T . Specifically, each grid point x(l) at level l ∈ {0, 1, . . . , L−1}
is mapped to an index using the corresponding hash table asfollows:

h(x(l)) = (

2⊕
i=1

x
(l)
i πi) mod T, (1)

where
⊕

denotes the bitwise XOR operator and πi represents unique and large
prime numbers. Each index stores F trainable parameters(features), denoted by
a feature vector θh(x(l)) ∈ RF . For a given queried input coordinate x̄, a feature
vector v(l) ∈ RF is calculated for each level by interpolating nearby grid features.
The final feature vector z ∈ RLF is then assembled through concatenation as

z = [v(1);v(2); . . . ;v(L)], v(l) = Ψ({θh(x(l))|nearby corners x(l) of x̄}), (2)

where Ψ(·) denotes a linear interpolation operator. The entire encoding process
is represented succinctly by z = enc(x̄;Θ), where Θ = {θ0, . . . , θT−1}. The
feature vector z served as the network input. The optical hyperparmater values
empirically found for pathological images are summarized in the supplementary.

2.2 Convolutional implicit neural representation

An INR maps each encoded vector z = enc(x̄;Θ) to the vector y = Θ(z) ∈
R3 denoting the pixel color values. Typically, a simple MLP, which is a fully
connected network, is used to map the model Θ(·). Assuming that the MLP
consists of N layers and each layer has no bias, for an arbitrary pixel position
x̄ = [x̄1; x̄2], the computation in the MLP can be expressed as

h(n+1) = φ(W (n)h(n)), (3)

where h(n) denotes the output of neurons in the lth layer or the input of neurons
in the n+ 1th layer. W (n) and φ(·) denote the weight and activation functions,
respectively. h(n+1) denote the output of the neurons in the n+ 1th layer. The
initial input is h(0) = z and the final output is h(N) = y. If a batch contains
encoded vectors for all pixel positions from a single image I, the computations
for all positions are conducted in parallel.
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As illustrated in Fig. 1 (A), these processes are analogous to those in CNNs.
Assuming that the CNN consists of only N convolution layers and is fed by the
image I, the computation in the CNN can be expressed as

D
(n+1)
j = φ(

K(n)∑
k=1

D
(n)
k ∗ P (n)

jk ), (4)

where the operation ∗ denotes convolution, K(n) denotes the number of feature
maps (channels) in the nth layer, D(n)

k denotes the kth feature map (channel)
in the nth layer, p(n)

jk denotes the kth filter (patch or kernel) in the nth layer

generating the jth feature map D
(n+1)
j in the next layer, and φ(·) denotes the

activation function. Let each filter be of size 1×1 and P
(n)
jk = wjk. The channel-

wise vector at pixel position (x̄1, x̄2) in feature map D
(n)
k can be expressed as

d(n) = [D
(n)
1 [x̄1, x̄2],D

(n)
2 [x̄1, x̄2], . . . ,D

(n)

K(n) [x̄1, x̄2]]
T . (5)

If d(n) is set to h(n), the form of the CNN computation (Eq. 4) is identical to
that of MLP (Eq. 3).

In this context, to obtain the target position values I(x̄∗), the MLP, which
functions as a CNN with 1 × 1 kernels, can access the feature vector z only of
the target position x̄∗. Our central idea involves expanding the receptive field
within the network, which enables the inclusion of features from adjacent pix-
els to determine the target values. Extending the single level [v(n)] to multiple
levels z = [v(n); . . . ; v(n)] contributes to the restoration of high-frequency com-
ponents, as indicated in previous research[6]. Building on this, our further ex-
tension from the multilevel feature z to a set of multilevel features {z = enc(p)
| adjacent pixels p of the target pixel p∗} is expected to enhance restoration
even further. This can be achieved using a CNN architecture that employs larger
kernels.

Our CINR model is depicted in Fig. 1 (B). A full-size image was segmented
into overlapping patches (each 128 × 128 pixels), and the tensor (a collection
of encoded vectors) derived from each patch area was fed into the model for
training purposes. The tensor is processed using two parallel-network flows in
the first stage. The first flow, a standard MLP with two layers, focuses on the
features of the target position, whereas the second flow, a CNN with two layers
and 3 × 3 kernels, encompasses the features from the surrounding areas of the
target position. In the second stage, the first flow processes the concatenated
maps, which are the resultant feature maps from both flows at the first stage,
through another standard MLP with two layers. Concurrently, a CNN with two
layers and 3 × 3 kernels processes the resultant maps from the first flow of the
first stage. The outputs from these two flows are merged and passed through an
additional CNN layer to integrate the features, culminating in the determination
of the target values.
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3 Results

3.1 Experiments

To assess the representational capabilities of our model, CINR, we utilized a
publicly available digital pathology image dataset from The Cancer Genome
Atlas (TCGA). The dimensions of each image are (10, 000, 10, 000, 3). The im-
ages were segmented into patches of (128, 128, 3), with each patch overlapping
its neighbors by 20%. During training, each batch comprised 100 patches. For
inference, the images were divided into non-overlapping patches of the same size
to evaluate performance of each model. We benchmark our model against two
conventional INR models: 1) NGP[6], which employs an MLP with four layers
and 128 nodes per layer (totaling 57,344 trainable parameters), and 2) ENGP,
which is an enhanced version with an MLP of eight layers and 256 nodes per
layer (totaling 475,136 trainable parameters). All models utilized the same hash
encoding technique (totaling 257,270,128 trainable parameters) and were config-
ured with identical hyperparameters. The mean squared error was used as the
loss function. These implementations were based on the PyTorch library, incor-
porating elements from Instant NGP[6] and tiny-cuda-nn[5] and were executed
on an NVIDIA A5000 GPU.

Origin Origin NGP - 33.34 PSNR ENGP - 33.38 PSNR CINR - 39.07 PSNR

Fig. 2. Original and reconstructed images by INR models. The first column presents
the original images from three different samples. The second column shows zoomed-in
views of specific local areas highlighted by rectangular boxes in each original image.
The subsequent columns showcase the INR models’ reconstructions of these local areas.
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3.2 Reconstruction Results

Fig. 2 presents the representative results of the selected test images for each
model. Compared to the original (ground-truth) images, our CINR model demon-
strated superior reconstruction of complex cellular and pathological patterns,
including some grain-like spots, without any smoothing effects, surpassing the
performance of other models.

These outcomes are supported by the quantitative evaluation results shown
in Fig. 3. The graph displays metrics such as the average PSNR and Structural
Similarity Index Measure (SSIM) to assess the similarity between the ground
truth and reconstructed images. CINR achieved significantly higher scores than
both NGP and ENGP. Notably, ENGP did not consistently experience an im-
provement in reconstruction quality, despite its larger network size. This indi-
cates that the enhanced performance of CINR is not merely due to an increase
in the number of trainable parameters.

Fig. 4 visually emphasizes the discrepancies between the original and recon-
structed images. Generally, all models struggled with the restoration of stained
parts because of their complexity. Our model exhibits fewer gaps in the structural
patterns and outlines. In the images illustrating the differences in the spatial
frequency domain, it is evident that the lower-frequency components were more
effectively restored in all models. However, our model demonstrated superior
restoration of high-frequency components compared with the others.

Fig. 5 shows the PSNR of the reconstructed images during the learning pe-
riod. NGP and ENGP exhibited faster convergence to a plateau. In contrast,
CINR demonstrates relatively slower convergence; however, after a certain pe-
riod (150 min), it surpasses the other models and progressively improves its
performance.
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Fig. 3. Quantitative measures of similarity between original and reconstructed images.
Bars represent Peak Signal-to-Noise Ratio (PSNR) values, and circle dots placed on
the dotted lines represent Structural Similarity Index Measure (SSIM) scores.
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4 Conclusion

Reconstructing images in high spatial frequency domains presents a significant
challenge in various scientific disciplines. CINR markedly enhances the restora-
tion of high-resolution images with high spatial frequencies by leveraging features
from adjacent locations encoded through a convolutional network. This approach
ensures a notable improvement in the performance of complex pathological im-
ages.

Structurally, the potential for recovering more high-frequency components
and achieving faster learning speeds remains unexplored. Expanding upon the
simple CNN framework by incorporating residual or attention mechanisms is
anticipated to further improve performance. However, a crucial bottleneck of
CINR lies in the extensive parameters required for multigrid hash encoding,
which hamper GPU memory allocation during training and subsequently slow
learning speeds. Furthermore, the bit count of the encoding and network param-
eters approaches those of the original images, posing challenges in replacing tra-
ditional image storage methods with INR-based approaches in tissue pathology.
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Future developments should focus on network compression, parameter sharing,
and innovative encoding strategies to overcome these challenges.

In conclusion, CINR holds substantial potential to revolutionize digital patho-
logical imaging systems. Advancements in memory reduction could lead to new
data compression protocols that surpass the conventional JPEG standard for
long-term storage. Additionally, it offers the possibility of simplifying complex
pyramid file structures by rapidly constructing images at any requested resolu-
tion.
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