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Abstract. High resolution is crucial for precise segmentation in fun-
dus images, yet handling high-resolution inputs incurs considerable GPU
memory costs, with diminishing performance gains as overhead increases.
To address this issue while tackling the challenge of segmenting tiny
objects, recent studies have explored local-global feature fusion meth-
ods. These methods preserve fine details using local regions and cap-
ture context information from downscaled global images. However, the
necessity of multiple forward passes inevitably incurs significant com-
putational overhead, greatly affecting inference speed. In this paper,
we propose HRDecoder, a simple High-Resolution Decoder network for
fundus image segmentation. It integrates a High-resolution Representa-
tion Learning (HRL) module to capture fine-grained local features and a
High-resolution Feature Fusion (HFF) module to fuse multi-scale local-
global feature maps. HRDecoder effectively improves the overall segmen-
tation accuracy of fundus lesions while maintaining reasonable memory
usage, computational overhead, and inference speed. Experimental re-
sults on the IDRID and DDR datasets demonstrate the effectiveness of
our method. The code is available at https://github.com/CVIU-CSU/
HRDecoder.
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1 Introduction

Fundus image lesion segmentation poses a significant challenge in medical image
analysis, which is crucial for the early detection and monitoring of various reti-
nal diseases. The pixel-wise classification of tiny lesions , as shown in Fig. 1b,
demands considerably higher resolution compared to other segmentation tasks.
Simply increasing the input resolution does boost performance of tiny lesions.
While this enhancement is accompanied by rising memory usage,increasing com-
putational overhead, and slower inference speed. These issues significantly hinder
practical application and further performance improvement of models.

Numerous efforts have been made to address the segmentation of tiny objects
efficiently, two primary approaches are explored. Some studies explore FPN-
like [12] or UNet-like [20] multi-scale features fusion methods to compensate for

https://github.com/CVIU-CSU/HRDecoder
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Fig. 1: (a) Our method reaches SOTA performance and is memory efficient, the
numbers represent input resolutions. (b) Example of tiny lesions in fundus im-
ages. (c) Performance gains on each category.

fine-grained details and enhance performance on small objects [29,15,22,6,5,7,27].
However, these bottom-up global feature fusion methods are susceptible to dis-
tortion from low-resolution feature maps, resulting in suboptimal performance.
There are also other methods that emphasize local feature fusion [13,14,25,2,8].
M2MRF [13] enhances performance on tiny lesions by designing specialized lo-
cal feature fusion modules, while it excessively emphasizes local features and
exhibits slow convergence on larger lesions. HRDA [8] and GLNet [2] design a
dual-branch network composed of a High-Resolution(HR) branch to learn tex-
ture details from randomly cropped images and a Low-Resolution(LR) branch to
extract contextual information through scaling operations, consequently achiev-
ing impressive results. While they need multiple forward passes, which signif-
icantly increase computational overhead and sharply decrease inference speed,
thus restricting further applications.

Instead, we propose HRDecoder, a simple framework combining the idea of
local-global high-resolution crops and multi-scale feature fusion at the decoder
stage, to efficiently and effectively segment tiny lesions. HRDecoder consists of
a HR Representation Learning (HRL) module to mine detailed features and a
HR Feature Fusion (HFF) module for integrating multi-scale features, signifi-
cantly enhancing performance on small lesions (see Fig. 1c). By simply using
scaling and cropping and a light-weight decoder, our method does not introduce
extra parameters, and can significantly alleviate issues of high memory usage,
computational overhead, and slow inference speed, as shown in Fig. 1a.

We summarize the contributions as follows: (1) We propose HRDecoder, a
simple framework to address the challenge of segmenting tiny lesions in fun-
dus images. (2) Our method not only improves segmentation performance but
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Fig. 2: Overview of our proposed HRDecoder. (a) Training and testing pipeline.
(b) The HRL module aim to learn local detailed features from simulated HR
feature maps. (c) The HFF module aggregates HR multi-scale features.

also effectively mitigates high memory consumption, high computational over-
head and slow inference speed. (3) Our framework dose not introduce any extra
trainable parameters and can be easily applied to existing methods.

2 Method

In this work, we propose HRDecoder for fundus image lesion segmentation. Our
method consists of two modules: one that simulates high-resolution inputs to
enhance the representation learning of small objects (Sec. 2.1), and another that
integrates high-resolution multiscale feature maps to capture detailed informa-
tion and local contextual cues for tiny targets (Sec. 2.2). Our approach can be
easily applied to various networks, enhancing performance at reasonable costs
in terms of memory usage, computational overhead, and inference speed.

As shown in Fig. 2a, given an input image x ∈ R3×σH×σW with corresponding
GT y ∈ RK×σH×σW , we first downsample x to xLR ∈ R3×H×W . LR features
zLR=fE(xLR) ∈ RC×h×w are then extracted by encoder fE . Subsequently, the
HRL module is adopted to enhance detail representation during training, and
the HFF for generating prediction ŷ ∈ RK×σh×σw during training and inference.

2.1 High-resolution Representation Learning

In [8], HR local patches are randomly cropped out to maintain details and simul-
taneously original image is resized into LR inputs to learn long-range context.
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The main drawback is that images need to go through encoder fE multiple
times, which incurs considerable memory consumption and computational over-
head. Moreover, sliding window is used for preserving details during inference,
resulting in a notable reduction in inference speed. Therefore, we introduce the
HRL module to address above issues (see Fig. 2b).

The HRL simply uses a lightweight decoder to mine details from HR feature
maps. Specifically, we first upsample feature zLR and obtain zOri ∈ RC×σH×σW ,
then random cropping is adopted to get M patches of features zc and corre-
sponding GT yc. We follow [8] to randomly sample M bounding boxes bic, i ∈
{0, 1...M − 1} from a discrete uniform distribution within the original size:

zic = zOri[b
i
c,1 : bic,2, b

i
c,3 : bic,4], yic = y[bic,1 : bic,2, b

i
c,3 : bic,4], (1)

bic,1 ∼ U{0, (σH − sh)/k} · k, bic,2 = bic,1 + sh,

bic,3 ∼ U{0, (σW − sw)/k} · k, bic,4 = bic,3 + sw.
(2)

Here, we adjust the coordinates to be divided by k in order to mitigate distortion
of features and the scale ratio of random cropping s can be represented as (1-
δ,1+δ). We set s to mimic random crop operation in preprocessing to enable the
model to further learn lesion features at different scales. Later, zc will be scaled
to a uniform size of h× w and obtain z′c. With resized features z′c, we calculate
the HR loss LHR for cropped GT masks yc, which is formulated as:

LHR = Σ
|K|
i LDice(fD(z′c)

i, yic), (3)

where LDice represents the binary Dice loss and |K| is the number of classes.
With the supervision of LHR, the segmentation model can progressively learn
intricate local features from high-resolution GT, thereby mitigating distortions
during upsampling and downsampling processes and enhancing segmentation
performance, especially for tiny lesions.

2.2 High-resolution Feature Fusion

The HRL module empowers the extraction of intricate information from large-
scale LR feature maps. Nevertheless, the HRL module tend to over emphasize
localized tiny lesions and disregard larger ones. Thus, the small-scale LR feature
map is essential to provide a holistic contextual understanding. To this end, we
propose a simple HFF module to integrate multi-scale feature maps and generate
a more comprehensive and refined prediction.

Specifically, we follow [8,2] and adopt a dual-branch network. As shown in
Fig. 2c, the LR branch inputs the LR feature zLR through the decoder fD to
obtain global prediction, which is then upsampled to ŷLR by a factor of σ. This
branch serves to provide rich global contextual information. Meanwhile, the HR
branch takes in HR feature zHR, also upscaled by a factor of σ, to capture
detailed local information. We use a sliding window to get l2 crops, where l2

denotes the number of windows. Typically, we set both the stride and window
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size as (h,w). HR prediction ŷHR is later obtained by aggregating the results
from sliding windows. With ŷLR and ŷHR, we fuse them together to generate
the final prediction ŷ:

ŷ = fA(z)⊙ ŷHR + (1− fA(z))⊙ ŷLR. (4)

Here, we use fA(·) to denote a general form of scale attention. In HRDA [8],
it represents using an additional decoder head fA to learn a scale attention on
the LR branch. While in our method, we simply design fA as a fixed value of
0.5. Given that most regions in fundus images are background areas, learning
scale attention from LR branch may hinder the ability to capture a coherent
scene layout, while weighted sum can better grasp lesion details and contextual
information (further discussed in Tab. 3). With the fuse prediction ŷ, we can
calculate the segmentation loss

LSeg = Σ
|K|
i LDice(ŷ

i, yi). (5)

Eventually, the overall loss function is formulated as:

L = LSeg + λLHR, (6)

where λ is hyper-parameter and is empirically set to 0.1.
By employing the HRL and HFF modules, our HRDecoder learns detailed

features and retains contextual information using small-scale inputs through
the encoder and large-scale feature maps through the decoder. By simply using
interpolation and cropping operations, our method does not introduce extra
parameters and can be easily applied to existing methods. Furthermore, given
that the resource overhead of the decoder is significantly lower than that of the
encoder, HRDecoder can effectively alleviate issues such as high memory usage,
computational overhead, and slow inference speeds.

3 Experiment

3.1 Datasets and Implementation Details

Datasets: We conduct experiments on two main public retinal lesion segmen-
tation datasets, i.e. IDRiD [19] and DDR [10]. The IDRiD dataset contains
81 high-quality retinal lesion segmentation images with a unified resolution of
4288×2848, 54 for training and 27 for testing. The DDR dataset consists of 757
color fundus images, with 383 for training, 149 for validation and the rest 225
for testing. The image resolutions vary from 1088×1920 to 3456×5184. Both
datasets provide pixel-level annotations for four different lesions, i.e. hard exu-
dates (EX), hemorrhages (HE), soft exudates (SE), and microaneurysms (MA).

Implementation Details: HRDecoder is implemented based on the MMSeg-
mentation [4] framework. We adopt HRNetv2 [23] as backbone and simple FC-
NHead [18] as decoder. Images from IDRiD and DDR datasets are resized to
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Table 1: Comparison with previous SOTA methods on IDRiD [19] and DDR [10]
datasets. † represents we reproduce it with the same experimental settings as
ours. * means we implement our method with ConvNeXt [17] backbone. Results
are averaged over three repetitions.

Methods AUPR F IoU
EX HE SE MA mAUPR EX HE SE MA mF EX HE SE MA mIoU

IDRiD

DNL [28] 75.12 64.04 64.73 32.48 59.09 73.15 61.87 63.96 32.78 57.94 57.67 44.80 47.03 19.61 42.28
HRNetv2† [23] 82.75 67.85 71.96 44.01 66.64 80.56 65.35 70.36 42.97 64.81 67.44 48.53 54.62 27.36 49.49

Swin† [16] 85.39 68.67 74.28 43.47 67.95 77.57 65.36 70.88 45.59 64.85 63.32 48.22 54.77 29.58 48.97
Segformer† [26] 82.47 69.23 73.69 37.63 65.75 76.10 64.55 69.49 40.65 62.70 61.43 47.66 53.24 25.52 46.96

Mask2Former† [3] 84.68 69.01 74.88 42.53 67.78 79.64 66.47 68.05 44.64 64.70 66.17 49.78 51.59 28.75 49.07
IFA [9] 81.92 69.01 70.47 46.35 66.94 79.80 67.43 69.12 46.35 65.68 66.39 50.86 52.82 30.17 50.06

PCAA [14] 81.63 66.74 75.49 43.33 66.80 79.58 64.59 74.13 43.17 65.37 66.09 47.70 58.89 27.53 50.05
TGANet [21] 82.16 65.60 68.86 42.19 64.70 80.01 63.46 67.89 41.29 63.16 66.67 46.48 51.39 26.01 47.64

LViT [11] 82.19 63.36 70.32 43.65 64.88 79.99 60.96 69.33 43.44 63.43 66.65 43.85 53.06 27.74 47.82
M2MRF† [13] 82.10 67.96 71.77 46.83 67.17 79.81 65.93 70.36 46.28 65.60 66.40 49.18 54.31 30.18 50.02

ConvNeXt† [17] 83.96 72.64 77.12 45.97 69.93 76.52 68.17 72.82 47.48 66.25 61.98 51.72 57.26 31.13 50.52
Bi-VLGM [24] 82.48 69.32 74.50 46.20 68.13 80.51 67.42 72.95 45.98 66.71 67.38 50.85 57.41 29.85 51.37
HRDecoder 87.55 70.80 77.65 49.16 71.29 80.61 66.68 72.99 49.35 67.41 67.54 50.04 57.63 32.55 51.94
HRDecoder* 84.65 71.53 76.23 50.28 70.67 79.34 68.45 72.89 50.58 67.82 66.10 52.26 57.45 33.96 52.44

DDR

DNL [28] 56.05 47.81 42.01 14.71 40.15 53.36 42.71 40.40 15.60 38.02 36.39 27.15 25.33 8.46 24.33
HRNetv2† [23] 61.48 51.01 47.42 24.62 46.13 58.78 48.95 46.17 24.61 44.63 41.58 32.32 29.98 13.98 29.47

Swin† [16] 64.49 55.80 50.07 19.51 47.47 60.05 53.46 47.96 25.97 46.86 42.91 36.50 31.23 14.92 31.39
Segformer† [26] 61.43 52.53 33.88 19.88 41.93 57.49 46.47 32.16 24.73 40.21 40.34 30.30 19.18 14.11 25.98

Mask2Former† [3] 63.28 55.26 51.87 19.03 47.36 59.60 49.73 53.36 23.63 46.58 42.45 33.35 36.28 13.40 31.37
IFA [9] 61.51 46.19 48.90 12.98 42.40 56.76 46.28 48.25 0.55 37.96 39.62 30.11 31.80 0.28 25.45

PCAA [14] 60.57 57.46 41.49 18.58 44.53 56.89 54.47 36.68 20.57 42.15 39.76 37.43 22.46 11.47 27.78
TGANet [21] 60.49 52.63 43.55 26.81 45.87 58.92 42.19 41.27 26.92 42.33 41.76 26.73 26.00 15.55 27.51

LViT [11] 61.35 46.29 48.06 27.61 45.83 59.15 42.85 46.88 27.78 44.17 42.00 27.27 30.62 16.13 29.01
M2MRF† [13] 63.74 54.88 49.95 27.91 49.12 60.41 47.60 48.73 27.70 46.11 43.28 31.27 32.25 16.08 30.72

ConvNeXt† [17] 63.87 58.03 50.61 15.89 47.10 58.71 55.18 50.91 22.22 46.76 41.50 38.05 34.08 12.37 31.50
Bi-VLGM [24] 62.01 57.38 50.95 26.19 49.13 57.90 54.38 50.81 26.06 47.29 40.75 37.34 34.06 14.98 31.78
HRDecoder 64.84 55.69 51.93 24.60 49.27 60.67 52.70 51.57 27.92 48.21 43.54 35.03 34.22 16.22 32.25
HRDecoder* 63.73 55.40 52.70 21.08 48.20 59.81 53.67 53.56 26.44 48.37 42.67 36.67 36.57 15.17 32.77

1440×960 and 1024×1024 in previous protocols; and we set scale factor σ to
2, i.e. 2880×1920 for IDRiD and 2048×2048 for DDR, respectively. To reduce
memory cost during training on IDRiD dataset, we randomly crop images to
1920×1920 and sliding window is used for inference. SGD with a learning rate
of 0.01 is used for optimization. Total batch size is 4, iterations are set to 20k
for IDRiD and 40k for DDR. For hyper-parameters, crop number M is set to 2
and 4, respectively. We set δ=0.25 to implicitly learn multi-scale features. For
evaluation metrics, we follow [13,24] and utilize the commonly used IoU, F-score,
AUPR and their mean values.

3.2 Comparison with State-of-the-Art (SOTA) Methods

SOTA Segmentation Methods: First, we present a comprehensive compar-
ison between our method and previous SOTA approaches including different
backbones [23,16,26,17], feature-enhanced methods [28,3,14,13] and multi-modal
methods [9,21,11,24] on IDRiD [19] and DDR [10] datasets in Tab. 1. The best
and second-best scores are denoted in bold and underlined, respectively. We
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Table 2: Comparison with different feature fusion methods on IDRiD [19] and
DDR [10] testing set. ‡ means the result is from [6] or [24]. Results are averaged
over three repetitions.

Methods IDRiD DDR Params(M) GFLOPs Memory(GB) FPS(img/s)mAUPR mF mIoU mAUPR mF mIoU
HRNet-1024 [23] 66.64 64.81 49.49 46.13 44.63 29.57 65.57 355.62 8.42 6.92
HRNet-2048 [23] 69.37 66.87 51.45 48.56 46.96 31.41 65.57 1422.48 22.34 2.36
CARAFE++ [22] 67.56 65.52 49.92 47.48 45.27 29.94 66.13 481.71 9.61 4.88

PMCNet‡ [6] 68.08 56.02 43.12 36.44 39.31 32.29 – – – –
SenFormer [1] 66.36 63.04 47.35 43.80 41.97 27.36 68.81 413.43 9.74 5.45
CATNet [15] 67.36 65.82 50.34 45.74 45.57 30.28 67.34 383.05 10.18 7.23
PCAA‡ [14] 66.80 65.37 50.05 44.52 52.15 27.78 – – – –
M2MRF [13] 67.17 65.60 50.02 49.12 46.11 30.72 70.30 353.65 9.56 7.56
HRDA [8] 71.17 67.45 52.09 49.13 47.95 32.32 66.06 2113.45 18.93 1.52

HRDecoder 71.29 67.41 51.94 49.27 47.81 32.25 65.57 440.69 10.26 4.86

primarily report results utilizing HRNet as backbone for fair comparison. For
IDRiD dataset, HRDecoder achieves results of 71.29%, 67.41%, and 51.94% in
mAUPR, mF, and mIoU, respectively. Our method outperforms previous SOTA
by a large margin of 3% in mAUPR. In terms of each lesion, our method achieves
the best or second-best in 3 out of 4 in AUPR, F and IoU. For DDR dataset,
consistent conclusions can be drawn as on IDRiD.

We observe that ConvNeXt [17] and Swin [16,3] exhibit relatively good per-
formance. We assert that CNN models or local window attention can effectively
capture intricate features within localized regions. In contrast, Transformer-
based methods [26,1] struggle to extract detailed information from fundus images
due to long-range dependency mechanism. Therefore, a simple CNN decoder is
helpful in capturing fine-grained features efficiently and effectively. Benefiting
from the high-resolution design in [23] and our exploration of HR feature maps,
HRDecoder significantly improves performance on tiny lesions within fundus im-
ages. Visual results on IDRiD and DDR are provided in supplementary material.

Multi-scale Feature Fusion Methods: To demonstrate the effectiveness and
efficiency of HRDecoder, we compare various multi-scale feature fusion methods
in terms of performance, parameter, computational overhead, GPU memory, and
inference speed in Tab. 2. We report results of HRNet [23] at different scales in
the first group. The second group [22,6,1,15] employs FPN-like [12] global feature
fusion methods. The third group [14,13,8] utilizes local feature fusion methods.

Global feature fusion methods integrate features across multiple scales and
improve segmentation performance. However, they are generally less effective
than local feature fusion methods. The HRDA [8] can significantly improve seg-
mentation performance. However, it requires 5×GFLOPs and 2×GPU memory
compared with above methods due to multiple forwards of encoder. Additionally,
the sliding window notably reduces its inference speed. In contrast, our method
achieves comparable or even superior performance to HRDA without signifi-
cantly increasing computational overhead or memory usage. Overall, HRDecoder
can achieve a better performance-cost trade-off.
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Fig. 3: Ablation on HRL module. (a) Influence of the number of HR crops M .
(b) Influence of scale ratio δ of HR crops. (c) Influence of HR loss weigh λ.

Table 3: Comparison of different fu-
sion method on IDRiD test set.
Fusion Methods fA(·) mAUPR mF mIoU

LR Attn. 70.34 67.06 51.60
HR Attn. 71.02 67.35 51.83

Weighted Sum 71.29 67.41 51.94

Table 4: Influence of HR scale factor
σ on IDRiD test set.
Scale Factor σ EX HE SE MA mIoU

1× 67.44 48.53 54.62 27.36 49.49
2× 67.54 50.04 57.63 32.55 51.94
4× 70.06 45.63 0.00 34.49 37.55

3.3 Ablation Study

In Fig. 3, we discuss the ablation study on HRL module. Fig. 3a shows the im-
pact of different numbers of HR crops. Training with larger M can enhance the
ability to capture details, while too many HR crops may lead the model to focus
excessively on tiny lesions e.g. MA and neglect larger lesions e.g. SE. Hence,
we set M to 2 and 4 for IDRiD and DDR, respectively. Fig. 3b illustrates the
influence of scale ratio (1-δ,1+δ). A larger δ results in a larger ratio range of HR
crop size. It is similar to the random crop operation during preprocessing. Im-
plicitly inputting multi-scale features enables the model learn features of various
scales to address lesions of different sizes. We set δ=0.25, as overly large δ may
introduce excessive uncertainty. Fig. 3c demonstrates the sensitivity to HR loss
weight λ. A larger λ tends to emphasize local features and diminish contextual
information. Experimental results show that 0.1 is a preferable choice.

We also conduct ablation studies on the HFF module. In Tab. 3 we compare
three different fusion strategies: learning scale attention from LR branch, from
HR branch and weighted fusion. In HRDA [8], attention is learned from LR
branch using an attention head, which is heavily affected by the predominance of
background regions in fundus images. While learning attention from HR detailed
features or simple weighted fusion is favored and we adopt the simple parameter-
free method. Tab. 4 demonstrates the effect of scaling ratios σ. σ=1 corresponds
to the vanilla HRNet [23]. When σ is set too large, HR crops will excessively
focus on tiny lesions e.g. EX and MA. However, for slightly larger lesions e.g. SE,
the model may misclassify due to severe lack of local context. Further ablation
studies are provided in supplementary material.
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4 Conclusion

In this paper, we propose HRDecoder, a straightforward framework that com-
bines an HRL module to mine local details and an HFF module to capture
contextual information, for fundus image segmentation. Our approach strikes
a balance between performance and memory usage, inference speed, and over-
heads without introducing extra parameters. Overall, HRDecoder can achieve
SOTA performance while maintaining manageable overheads. There are certain
limitations: the simple feature fusion is specifically designed for fundus images,
whereas scale attention may have broader applicability in various tasks. Addi-
tionally, the simple CNN-based decoder may fall short in capturing contextual
information. Despite these limitations, we believe that our approach provides a
simple and versatile solution.

Acknowledgments. This manuscript was supported in part by the National Key
Research and Development Program of China under Grant 2021YFF1201202, the Key
Research and Development Program of Hunan Province under Grant 2023SK2029,
and the Natural Science Foundation of Hunan Province under Grant 2024JJ5444 and
2023JJ30699. The authors wish to acknowledge High Performance Computing Center
of Central South University for computational resources.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bousselham, W., Thibault, G., Pagano, L., Machireddy, A., Gray, J., Chang, Y.H.,
Song, X.: Efficient self-ensemble for semantic segmentation. In: 33rd British Ma-
chine Vision Conference (2022)

2. Chen, W., Jiang, Z., Wang, Z., Cui, K., Qian, X.: Collaborative global-local net-
works for memory-efficient segmentation of ultra-high resolution images. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 8924–8933 (2019)

3. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1290–
1299 (2022)

4. Contributors, M.: MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation (2020)

5. Feng, S., Zhao, H., Shi, F., Cheng, X., Wang, M., Ma, Y., Xiang, D., Zhu, W., Chen,
X.: Cpfnet: Context pyramid fusion network for medical image segmentation. IEEE
Trans. Med. Imaging 39(10), 3008–3018 (2020)

6. He, A., Wang, K., Li, T., Bo, W., Kang, H., Fu, H.: Progressive multiscale consis-
tent network for multiclass fundus lesion segmentation. IEEE Trans. Med. Imaging
41(11), 3146–3157 (2022)

7. Heidari, M., Kazerouni, A., Soltany, M., Azad, R., Aghdam, E.K., Cohen-Adad,
J., Merhof, D.: Hiformer: Hierarchical multi-scale representations using transform-
ers for medical image segmentation. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. pp. 6202–6212 (2023)

https://github.com/open-mmlab/mmsegmentation


10 Z. Ding et al.

8. Hoyer, L., Dai, D., Van Gool, L.: Hrda: Context-aware high-resolution domain-
adaptive semantic segmentation. In: Proceedings of the European Conference on
Computer Vision. pp. 372–391. Springer (2022)

9. Hu, H., Chen, Y., Xu, J., Borse, S., Cai, H., Porikli, F., Wang, X.: Learning im-
plicit feature alignment function for semantic segmentation. In: Proceedings of the
European Conference on Computer Vision. pp. 487–505. Springer (2022)

10. Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., Kang, H.: Diagnostic assessment of
deep learning algorithms for diabetic retinopathy screening. Information Sciences
501, 511–522 (2019)

11. Li, Z., Li, Y., Li, Q., Wang, P., Guo, D., Lu, L., Jin, D., Zhang, Y., Hong, Q.: Lvit:
language meets vision transformer in medical image segmentation. IEEE Trans.
Med. Imaging (2023)

12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 2117–2125 (2017)

13. Liu, Q., Liu, H., Ke, W., Liang, Y.: Automated lesion segmentation in fundus im-
ages with many-to-many reassembly of features. Pattern Recognition 136, 109191
(2023)

14. Liu, S.A., Xie, H., Xu, H., Zhang, Y., Tian, Q.: Partial class activation atten-
tion for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16836–16845 (2022)

15. Liu, Y., Li, H., Hu, C., Luo, S., Luo, Y., Chen, C.W.: Learning to aggregate multi-
scale context for instance segmentation in remote sensing images. IEEE Transac-
tions on Neural Networks and Learning Systems (2024)

16. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

17. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11976–11986 (2022)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3431–3440 (2015)

19. Porwal, P., Pachade, S., Kokare, M., Deshmukh, G., Son, J., Bae, W., Liu, L.,
Wang, J., Liu, X., Gao, L., et al.: Idrid: Diabetic retinopathy–segmentation and
grading challenge. Med. Image Anal. 59, 101561 (2020)

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. pp. 234–241. Springer, Cham (2015)

21. Tomar, N.K., Jha, D., Bagci, U., Ali, S.: Tganet: Text-guided attention for im-
proved polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li,
S. (eds.) MICCAI 2022. pp. 151–160. Springer, Cham (2022)

22. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe++: Unified content-
aware reassembly of features. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4674–
4687 (2022)

23. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y.,
Tan, M., Wang, X., et al.: Deep high-resolution representation learning for visual
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)



High-Resolution Decoder Network for Fundus Image Lesion Segmentation 11

24. Wenting, C., Jie, L., Yixuan, Y.: Bi-vlgm: Bi-level class-severity-aware vision-
language graph matching for text guided medical image segmentation. arXiv
preprint arXiv:2305.12231 (2023)

25. Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., Qin, J.: Scs-net: A scale and
context sensitive network for retinal vessel segmentation. Med. Image Anal. 70,
102025 (2021)

26. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. Proceed-
ings of the IEEE/CVF international conference on computer vision 34, 12077–
12090 (2021)

27. Yang, Y.H., Huang, T.E., Sun, M., Bulò, S.R., Kontschieder, P., Yu, F.: Dense
prediction with attentive feature aggregation. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 97–106 (2023)

28. Yin, M., Yao, Z., Cao, Y., Li, X., Zhang, Z., Lin, S., Hu, H.: Disentangled non-local
neural networks. In: Proceedings of the European Conference on Computer Vision.
pp. 191–207. Springer (2020)

29. Zhu, G., Wang, R., Liu, Y., Zhu, Z., Gao, C., Liu, L., Sang, N.: An adaptive post-
processing network with the global-local aggregation for semantic segmentation.
IEEE Transactions on Circuits and Systems for Video Technology (2023)


	HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation

