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Abstract. Detecting and classifying lesions in breast ultrasound images is a 
promising application of artificial intelligence (AI) for reducing the burden of 
cancer in regions with limited access to mammography. Such AI systems are 
more likely to be useful in a clinical setting if their predictions can be explained. 
This work proposes an explainable AI model that provides interpretable predic-
tions using a standard lexicon from the American College of Radiology’s Breast 
Imaging and Reporting Data System (BI-RADS). The model is a deep neural 
network which predicts BI-RADS features in a concept bottleneck layer for can-
cer classification. This architecture enables radiologists to interpret the predic-
tions of the AI system from the concepts and potentially fix errors in real time by 
modifying the concept predictions. In experiments, a model is developed on 
8,854 images from 994 women with expert annotations and histological cancer 
labels. The model outperforms state-of-the-art lesion detection frameworks with 
48.9 average precision on the held-out testing set. For cancer classification con-
cept intervention increases performance from 0.876 to 0.885 area under the re-
ceiver operating characteristic curve. Training and evaluation code is available at 
https://github.com/hawaii-ai/bus-cbm.   
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1 Introduction 

Artificial intelligence (AI) is a promising tool for detecting and classifying lesions in 
breast ultrasounds, rivaling the accuracy of radiologists [1]. However, the adoption of 
AI systems for reviewing medical images is hindered by the inability of radiologists to 
verify predictions. Explainable AI (XAI) systems that can explain why a lesion has a 
high probability of being cancerous will help medical professionals identify situations 
in which the AI should not be trusted and perhaps enable them to correct the AI’s mis-
takes. AI-empowered solutions have the potential to speed up reading and improve 
workflow for resource-limited scenarios, where there may be a single radiologist 
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serving a large population. XAI may further improve workflow efficiency, allowing the 
radiologist to review cases where AI recommends biopsy with explanation, designating 
the AI as a second reader [2].  

Concept bottleneck models (CBM) [3] are a type of neural network architecture 
which seeks to enforce interpretability by aligning intermediate model representations 
with human-defined concepts. By forcing the model to learn an intermediate represen-
tation based on medically-relevant concepts, the model predictions become both inter-
pretable and modifiable. Learned intermediate concepts in neural networks do not usu-
ally align well with human-understandable concepts [4, 5], but CBM models can be 
designed with only human-understandable concepts in an intermediate bottleneck layer. 
Here, we explore both strict CBMs and models that can also make use of a side channel; 
a single node in the bottleneck layer which is not associated with any concept and only 
learned based on final classification. 

The BI-RADS masses lexicon for ultrasound has five properties that characterize 
lesions: shape, orientation, margin, echo pattern, and posterior features. Each property 
is divided into sub-categories which are assigned to lesions to determine risk of malig-
nancy and describe lesion characteristics. This language is familiar to radiologists and 
as such may be a useful way to communicate AI decisions and build trust in AI-based 
clinical decision support. The BI-RADS masses lexicon for ultrasound has been ex-
plored in breast ultrasound (BUS) image classification-only AI as a multi-task learning 
problem [6, 7]. While that approach provides interpretable predictions, the lack of bot-
tleneck layer means that predictions cannot be updated by modifying the concepts. This 
modelling paradigm is most similar to the nonlinear CBM with a side channel we pro-
pose, however BI-RADS-NET [6, 7] fails to provide lesion localization or delineation. 

 “BI-RADS inspired” radiomic features have previously been used to predict lesion 
malignancy from known lesion delineations  [8-12]. In these approaches, the BI-RADS 
mass features (as defined by the ACR) are approximated by computational methods. 
For example, posterior feature presence can be approximated by computing the differ-
ence in average gray pixel intensity between the lesion and its posterior area [11]. We 
propose a method which works from the BI-RADS features as defined by the ACR and 
does not require a priori lesion delineation or detection for malignancy prediction, im-
proving both radiologist understanding and workflow efficiency. 

Models using expertly-annotated BI-RADS features from known lesion boundaries 
to predict malignancy have been proposed [12-14] ([12] includes both morphometric 
and clinical BI-RADS features). We propose a method which does not require a priori 
lesion delineation or detection for malignancy prediction, improving workflow effi-
ciency. This framework represents only the post-bottleneck architecture in the proposed 
method with no side channel, trained directly from expert annotations.  

The main contributions of this paper are: (1) we propose a concept bottleneck ap-
proach to breast lesion classification from ultrasound using the BI-RADS masses lexi-
con; (2) we demonstrate the efficacy of this method on a dataset of 994 women; and (3) 
we release the first publicly-available AI model with mask-style outputs for lesion de-
tection in BUS. All model predictions of malignancy are explicitly interpretable using 
a language familiar to radiologists and radiologists can easily update the AI predictions 
by modifying the concepts. This improves workflow (by reducing “translation time” 
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between the radiologist and AI) and increases radiologist trust in AI decisions con-
sistent with BI-RADS feature indications. 

 

Fig. 1. An overview of BI-RADS CBM, including the Mask-RCNN underlying structure and the 
BI-RADS concept bottleneck sub-network. 

2 BI-RADS Concept Bottleneck Network  

We propose to integrate a CBM [3] into an established object detection architecture. 
Given a proposed lesion, our model (BI-RADS CBM) first predicts the BI-RADS 
masses lexicon, then uses it to predict whether the lesion is cancerous. For simplicity, 
we binarize the BI-RADS masses lexicon for each property into those classifications 
which are either indicative of malignancy or indicative of benignity. A lesion which 
has classifications indicative of benignity is oval shaped, oriented parallel to the skin, 
has a circumscribed (well-defined) margin, is anechoic, and has no posterior features 
(suggesting no difference in ultrasound wave speed through the lesion). All other clas-
sifications are binarized as being indicative of malignancy.   

Fig. 1 illustrates the architecture of the proposed BI-RADS CBM. In experiments, 
we train in three stages. We start from a standard Mask RCNN [15] architecture with a 
ResNet-101 feature pyramid network (FPN) [16, 17], pretrained on MS-COCO [18]. In 
Stage 1, the model is fine-tuned to detect lesions only. In Stage 2, a classification head 
is trained to predict the BI-RADS masses lexicon concepts. In Stage 3, the cancer head 
is trained. Models are implemented in PyTorch [19] using the Detectron2 [20] library. 

The BI-RADS bottleneck (see Fig. 1) is comprised of both convolutional and max-
pooling (pre-concepts) and fully-connected (post-concepts) layers. We hypothesize that 
a convolutional architecture from the mask feature maps enables the cancer head to 
make use of local (by pooling) and global (by FPN) information most effectively. 
Global information may enhance cancer prediction, particularly in a CBM with a side 
channel, by encoding information about cancer risk in breast tissue, such as breast den-
sity, the strongest risk factor for breast cancer outside of age [21]. The cancer head is 
trained on the outputs from the bottleneck layer, rather than directly from radiologist 
annotations.  
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3 Experiments & Data 

3.1 Dataset  

BUS images were collected from a prospective repository of 123,000 participants un-
dergoing breast imaging between 2009-2023 in the Hawaiʻi and Pacific Islands Mam-
mography Registry (WCG IRB, study number 1264170). Women in this registry are 
matched to the Hawaiʻi Tumor Registry (HTR) to determine cancer status. Inclusion 
criteria for all participants were as follows: (1) female; (2) has a record of diagnostic or 
screening BUS imaging; (3) BUS imaging has ≥ 2 DICOM image records; (4) exam 
rated as BI-RADS 2 (benign) or higher. Cases and controls were randomly selected 
from the pool of eligible women and matched 1:3 on birth year and BUS machine man-
ufacturer. Cases were subject to the following additional inclusion criteria: (1) Record 
of invasive breast cancer diagnosis in the HTR; (2) breast cancer diagnosis within one 
year of BUS imaging date; (3) BUS DICOM laterality matches HTR tumor laterality 
or is unknown. Controls were considered for inclusion if they failed to link to the HTR 
for cancer of any type. A total of 261 cases and 783 matched controls were included. 

BUS images were annotated with lesion delineation, imaging artifacts, and the ACR 
BI-RADS masses lexicon for ultrasound by a breast radiologist with eight years of clin-
ical experience in BUS image interpretation (A.A.). The radiologist was blinded to his-
tological cancer status and patient identifier. Images were annotated with adapted VIA 
Annotation Software [22]. A total of 10,291 BUS images were annotated. To determine 
the reliability of the radiologist annotations, we constructed a concurrence reading set 
to measure inter-radiologist variability. 900 images, balanced between histologically 
benign, normal (benign, with no annotations from A.A.), and histologically malignant, 
were sampled and read by C.Z. Reads were performed under the same blinding protocol 
as A.A. Inter-observer agreement was measured with Cohen’s κ [23]. For lesion exist-
ence, inter-observer agreement was found to be 0.784 (substantial agreement).  

To measure binarized BI-RADS inter-observer agreement, only annotations where 
both radiologists a) delineated a lesion and b) those delineations overlap with intersec-
tion over union (IoU) 0.25 are considered. A total of 620 lesions were considered in 
this calculation (A.A. and C.Z. delineated a total of 705 and 741 lesions, respectively). 
Cohen’s κ values were 0.675 (substantial agreement), 0.568 (moderate), 0.730 (sub-
stantial), 0.701 (substantial), and 0.309 (fair) for binarized lesion shape, orientation, 
margin, echo pattern, and posterior features, respectively. The network is trained with 
annotations from one expert (A.A.).   

3.2 Data Preprocessing 

 After annotation, BUS images which were identified as containing clips/markers (n = 
43), biopsy needles (n = 377), and breast implants (n = 109) were excluded. Addition-
ally, images whose DICOM header indicated that they were collected during breast 
biopsy (n = 59), invalid images (little/no breast tissue visible, n = 294), images collected 
with elastography (n = 203), images missing cancer status linkage (n = 9), images with 
incomplete annotations (n = 171), and images where the radiologist was unsure about 
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lesion location or any of the BI-RADS masses lexicon classifications for any lesion in 
the image (n = 172) were excluded. After all image-level exclusions, 163 complete and 
98 incomplete case-control groups, containing 249 cases and 745 controls, remain. 

Data were randomly split into training (70%), validation (10%), and testing (20%) 
by case-control group. No women, images, or lesions are represented in more than one 
split. Table 1 displays a summary of women, lesions, and images per data split and 
overall. The supplement contains additional summary statistics for the study sample, 
including BI-RADS masses lexicon distribution within each split. Note that lesion 
counts represent the number of total annotated areas, not the number of unique lesions. 

Table 1. Characteristics of the study sample. Additional sub-population counts and characteris-
tics can be found in the supplement. *All image-level counts reflect the number of images col-
lected, not the resulting number of images after dual-view images were split. Dx = diagnosis.  

Dataset Characteristic, Unit Train Validation Test Overall 

Women with benign findings, N (%) 520 (75.0) 75 (74.3) 150 (75.0) 745 (74.9) 
Women with malig. findings, N (%) 173 (25.0) 26 (25.7) 50 (25.0) 249 (25.1) 
Median days btw. BUS & Dx (IQR) 4.0 (24.0) 2.5 (22.0) 0 (24.8) 3.0 (24.0) 
Mean no. of images/woman, N (SD) 9.03 (4.89) 9.01 (3.87) 8.42 (3.33) 8.91 (4.52) 

Images, N* 6,260 910 1,684 8,854 
Images with two views, N (%) 830 (13.3) 112 (12.3) 119 (7.1) 1,061 (12.0) 

Mean no. of lesions/image, N (SD) 1.26 (0.50) 1.21 (0.41) 1.17 (0.40) 1.24 (0.48) 
Mean no. of views/woman, N (SD) 8.39 (6.89) 7.54 (5.06) 6.51 (3.92) 7.94 (6.29) 

Lesions with benign findings, N (%) 2,626 (62.5) 369 (64.4) 584 (67.0) 3,579 (63.4) 
Lesions with malig. findings, N (%) 1,577 (37.5) 204 (35.6) 288 (33.0) 2,069 (36.6) 

3.3 Experiments 

All experimental model specifications are trained with image augmentations (random 
brightness, random horizontal and vertical flipping, random contrast, and random crop-
ping). Training minimized the binary cross-entropy loss for cancer and per-concept 
concept classification using the SGD optimizer with mini-batches of 16 images per 
batch and a linear learning rate warmup (0.001). Complete model configuration files 
can be found in the released code repository. Each training stage is undertaken with the 
weights from the previous stage frozen.  

Cancer head complexity. The architecture of the cancer prediction head in the BI-
RADS CBM is varied to examine the tradeoff between model explainability and per-
formance in cancer prediction. The three architectures are: (1) a linear cancer head from 
the concepts only, representing the most direct clinically-interpretable prediction; (2) a 
nonlinear cancer prediction head from the concepts only; and (3) a nonlinear cancer 
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prediction head wherein an additional, learnable, non-clinical concept is included in the 
bottleneck. The last architecture represents the least clinically-interpretable prediction.  
 

 
Fig. 2. Example predicted masks, cancer status, and concepts by the BI-RADS CBM model with 
a nonlinear concept head, side-channel, and with no concept correction prior to cancer prediction 
on images from the unseen test set. 
 
Corrected concepts. Concepts are considered correctly predicted by the bottleneck if 
their intermediate representation (binarized at 0.5) corresponds to the correct class. 
When these intermediate activations are logits, they are sigmoid transformed for ad-
justment, then transformed back to logit space. When concepts are incorrectly pre-
dicted, they can be intervened on. We define two methods of intervention: minimal and 
maximal. In minimal and maximal correction, representations are adjusted just until the 
correct class is predicted with pseudo-probability 0.51 and 0.99, respectively.  

Comparison with baseline model. We train an additional, non-explainable cancer 
head on top of the backbone as a baseline. We do not evaluate any of the publicly 
available frameworks for lesion detection in BUS on our data.  CVA-Net [24] and [25] 
are not well-suited for our data due to our lack of temporally-ordered BUS frames. [26] 
and [27] fail to provide segmentation mask-style lesion detections, limiting direct com-
parability to BI-RADS CBM. We provide comparisons to reported results only.  

3.4 Performance Evaluation 

Performance at each stage of training. For the lesion detection task (Stage 1), perfor-
mance is evaluated using standard object detection metrics for both segmentation mask 
and bounding box targets. We report average precision (AP), AP50, and AP75 for each 
target. The maximum number of detections is set at 10 for all evaluations. For the con-
cept (Stage 2) and cancer (Stage 3) classification tasks, performance is evaluated via 
area under the receiver operating characteristic curve (AUROC) with 95% confidence 
intervals, computed using DeLong’s method [28, 29], at IoU 0.5 and 0.75.  
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Evaluation with corrected concepts. To assess the potential clinical utility of inter-
venable concepts, we compute cancer classification performance (via AUROC) with 
corrected concepts. When one ground truth annotation exists in an image, all lesions’ 
incorrectly predicted concepts are adjusted to the ground truth values, according to the 
adjustment type (minimal or maximal). When more than one ground-truth annotation 
exists in an image, each detected lesion is matched to a ground-truth annotation based 
on maximum IoU. If IoU is 0, the predictions are not changed. When no ground-truth 
annotations exist in the image, none of the predicted concepts are adjusted.  

4 Results  

Model hyperparameters were systematically searched using Optuna [30], with 25 trials 
undertaken for each training stage. The final model was chosen based on performance 
on the validation set. Hyperparameter search space and results are reported in the Sup-
plement. Fig. 2 displays example ground-truth and predicted masks, cancer and BI-
RADS mass lexicon labels on images from the unseen test set (images were cropped 
post-analysis for ease of visualization).  The results from the lesion detection task are 
reported in Table 2. The BI-RADS CBM backbone detected lesions with AP 0.469 for 
bounding box-style detections on the held-out testing set, outperforming both video-
based baselines on their respective testing sets. Notably, the BI-RADS CBM backbone 
also significantly outperforms the reported image-level results reported in [25]. Perfor-
mance characteristics for BI-RADS clinical concept prediction are reported in Table 3.  

Cancer classification results for the concept correction and cancer head complexity 
experiments are reported in Table 4. As expected, the best-performing model without 
intervention was the most flexible (and least interpretable) non-linear model with a 
side-channel (0.875 AUROC at IoU 0.5). Removing the side channel slightly reduces 
performance but increases interpretability. Without the side-channel, it is possible to 
perform counterfactual reasoning by modifying individual concepts and observing the 
output prediction, with the non-linear version having slightly higher performance 
(0.865 AUROC at IoU 0.5) than the linear version (0.863 AUROC at IoU 0.5) at the 
cost of the relationship between concepts and predictions being less interpretable. No-
tably, all BI-RADS CBM model designs outperformed the baseline model which did 
not use BI-RADS concepts at all (0.850 AUROC at IoU 0.5). The BI-RADS features 
add domain knowledge that encourages the model to capture visual features indicative 
of cancer status, rather than learning all features from scratch. 

Table 2. Performance characteristics for the lesion detection task. Segm = segmentation perfor-
mance metrics. BBox = bounding box performance metrics. Performance metrics are reported as 
in original papers. [27] and [26] do not report AP and so are excluded from this table.  

Model/Framework 
AP AP50 AP75 

Segm BBox Segm BBox Segm BBox 

BI-RADS CBM 0.489 0.469 0.780 0.775 0.554 0.528 
STNet [25] N/A 0.400 N/A 0.703 N/A 0.433 
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CVA-Net [24] N/A 0.361 N/A 0.651 N/A 0.385 
 

Table 3. Performance characteristics for the concept classification task (95% CI). 

BI-RADS Concept AUROC @ IoU=0.5 (n=807) AUROC @ IoU=0.75 (n=616) 

Lesion Posterior Features 0.616 (0.572, 0.659) 0.551 (0.501, 0.601) 
Lesion Echo Pattern 0.921 (0.903, 0.939) 0.928 (0.908, 0.948) 
Lesion Shape 0.901 (0.876, 0.927) 0.897 (0.864, 0.930) 
Lesion Orientation 0.842 (0.798, 0.887) 0.838 (0.777, 0.898) 
Lesion Margin 0.916 (0.893, 0.940) 0.915 (0.885, 0.945) 

 
The effect of concept intervention was mixed. The maximal concept correction strat-

egy unilaterally degraded model performance in cancer classification. One likely reason 
for this is that the cancer classifier was trained on soft labels from the CBM, and so the 
model is forced to generalize beyond its training data distribution in the maximal inter-
vention strategy.  In contrast, the minimal strategy always increased model perfor-
mance, but more for the linear and non-side channel cancer heads. This suggests that 
the side channel cancer head ignores the predicted BI-RADS features in favor of the 
learned side channel.  

Table 4. Performance characteristics for the cancer classification task, with and without concept 
correction on the testing set. CBM = BI-RADS CBM.  

Model 
Side  

channel? 

Non-

linear? 
Correction?  

AUROC @  

IoU = 0.50  

AUROC @ 

 IoU = 0.75 

CBM No No None 0.863 (0.833, 0.892) 0.861 (0.824, 0.898) 
CBM No No Minimal 0.885 (0.857, 0.912) 0.885 (0.851, 0.919) 

CBM No No Maximal 0.839 (0.808, 0.871) 0.841 (0.802, 0.879) 

CBM No Yes None 0.865 (0.835, 0.894) 0.862 (0.825, 0.899) 
CBM No Yes Minimal 0.875 (0.846, 0.905) 0.874 (0.836, 0.912) 
CBM No Yes Maximal 0.823 (0.789, 0.857) 0.814 (0.770, 0.858) 

CBM Yes Yes None 0.875 (0.847, 0.903) 0.871 (0.836, 0.906) 
CBM Yes Yes Minimal 0.875 (0.847, 0.903) 0.872 (0.837, 0.907) 
CBM Yes Yes Maximal 0.851 (0.819, 0.882) 0.845 (0.806, 0.885) 

Baseline N/A N/A N/A 0.850 (0.821, 0.879) 0.876 (0.845, 0.906) 

5 Conclusion 

To enhance interpretability of cancer status classification of lesions in BUS, while 
providing lesion delineation, we propose BI-RADS CBM. Experiments on a large 
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internal dataset of BUS imaging with expert annotations and histological labels demon-
strate that an AI model can be both accurate and interpretable. We further demonstrate 
for the first time that BI-RADS concept intervention is possible and increases cancer 
classification performance. The limitations of this work can largely be attributed to the 
use of registry data. Briefly the limitations are: lack of demographic information, lim-
iting capacity for subgroup analysis; lack of a geographically-distinct external testing 
set for model evaluation; and that BI-RADS CBM is not evaluated alongside an expert 
reader in this work, we plan to complete this in future work. BI-RADS CBM presents 
an XAI solution for lesion detection, description, and classification from BUS suitable 
for use in limited-resource scenarios to stretch limited radiological resources.  
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