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Abstract. Learning from label proportions (LLP) is a weakly super-
vised classification task in which training instances are grouped into bags
annotated only with class proportions. While this task emerges naturally
in many applications, its performance is often evaluated on bags gener-
ated artificially by sampling uniformly from balanced, annotated datasets.
In contrast, we study the LLP task in multi-class blood cell detection,
where each image can be seen as a “bag” of cells and class proportions
can be obtained using a hematocytometer. This application introduces
several challenges that are not appropriately captured by the usual LLP
evaluation regime, including variable bag size, noisy proportion annota-
tions, and inherent class imbalance. In this paper, we propose the Vertex
Proportion loss, a new, principled loss for LLP, which uses optimal trans-
port to infer instance labels from label proportions, and a Deep Sparse
Detector that leverages the sparsity of the images to localize and learn
a useful representation of the cells in a self-supervised way. We demon-
strate the advantages of the proposed method over existing approaches
when evaluated in real and synthetic white blood cell datasets.

1 Introduction

Large, annotated datasets played a critical role in the early success of deep mod-
els. Since then, extending this success to unsupervised and weakly supervised
regimes has been an active focus of research. One example is Learning from La-
bel Proportions (LLP), a weakly supervised task that aims to learn an instance
classifier without instance-level annotations. In particular, LLP assumes that the
classifier has access to bags of instances during training, each one annotated only
with the proportion of instances corresponding to each class (e.g., 70% class A,
30% class B). This LLP paradigm not only reduces the annotation burden but
also arises naturally in diverse applications. For example, in vision-based blood
count, the goal is to detect and classify all the blood cells (instances) in an im-
age (bag). Annotating the location and class of each cell becomes prohibitively
expensive given the large number of cells and required expertise; however, class
proportion information can be obtained using a hematocytometer [31]. Similarly,
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Fig. 1. DSD performs multi-class cell detection by learning a structured latent repre-
sentation of the image, suitable for object classification and image reconstruction. The
classification task is weakly supervised by label proportions via the proposed VP loss,
while the reconstruction task is self-supervised. For lensless imaging, a physics-based,
sparsifying transformation T (·) is incorporated to the model.

when analyzing lung images of emphysema patients, one might be interested in
predicting segmentation masks (instances) corresponding to damaged tissue, but
due to annotation cost only have access to the proportion of diseased tissue in
each image (bag) [4]. Other relevant LLP applications include assisted reproduc-
tive technology [12,11] and vision-based sperm cell classification [7].

While several approaches to address the LLP task have been explored in the
past, existing methods rely on ad-hoc heuristics, are very slow to compute, re-
quire precise hyperparameter tuning, or have numerous trivial solutions. Recent
methods perform extensions to multi-class, high-dimensional tasks like image
classification [17,24,30,16,26,6,18,15]; however, their performance in real-world
LLP settings remains unknown since they have been consistently evaluated in
an artificial LLP scenario. Namely, images are uniformly sampled from balanced
classification datasets (MNIST, CIFAR-10, CIFAR-100, among others) to create
bags of a fixed size, and their class proportions are obtained by aggregating the
ground-truth (GT) instance labels. This evaluation setting fails to replicate key
aspects observed in real-world applications such as class imbalance, noisy label
proportions, and variable bag size.

We aim to advance the understanding of LLP by studying it in the context
of a relevant application: multi-class cell detection in lensless imaging. We focus
on white blood cell (WBC) subtype classification, which is critical in the assess-
ment of infections and the status of the immune system in general [2]. Among
other challenges, this task presents a strong class imbalance, with granulocytes
and monocytes representing more than 50% and less than 12% of the WBCs,
respectively [5]. Moreover, WBC proportions from complete blood count (CBC)
reports are imprecise for this task, since they are not obtained from the same
field of view as our images, and the detection process incorporates additional
noise. In this context, the contributions of this paper are the following:
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1. We propose a principled LLP loss, the vertex proportion (VP) loss, which
is based on optimal transport (OT) and propagates global annotations to
instance labels as latent variables. Unlike OT-based pseudo-labeling ap-
proaches [6,18,15], the VP loss computation is simple as it does not require
additional hyperparameters, alternating updates, or postprocessing steps.

2. We introduce the deep sparse detector (DSD), a self-supervised model that
localizes cells and learns useful representations to classify them in a unified
framework. Unlike the greedy state-of-the-art detector for this problem [31],
DSD can detect hundreds of cells in an image with just a single forward pass,
and it does not rely on alternative data sources for training.

3. We study, for the first time, the WBC subtype classification task as an LLP
problem. We evaluate our method along with other common LLP approaches
in a real dataset, and also generate a new, synthetic dataset 4 which allows
for the computation of detailed metrics. Unlike artificial scenarios [6], in this
case we observe that inferring instance-level labels during training is critical.

2 Proposed approach

We address this weakly supervised multi-class cell detection task through a uni-
fied architecture, the DSD model in Fig. 1, and divide the learning problem into
self-supervised localization and LLP classification. Sec. 2.1 introduces the LLP
problem and our VP loss to learn from proportions (given a bag of cell embed-
dings), and Sec. 2.2 explains how DSD predicts cell locations and embeddings.

2.1 Learning from label proportions (LLP)

Let
{
(xi,yi)

}N

i=1
be the set of N cells present in an image (bag), where xi ∈ Cd

is the embedding associated with the i-th object (we use complex-valued features
because they arise naturally in lensless imaging), and yi ∈ RK is a one-hot vector
indicating its GT class (out of K classes). The classification task aims to find
a function CΘC

that correctly estimates the class labels, i.e., CΘC
(xi) := ŷi ≈

yi,∀i. This is usually achieved by minimizing the cross-entropy loss; however,
its computation requires cell-level class annotations yi, which are not available

in LLP. In contrast, we need to learn from class proportions Y = 1
N

∑N
i=1 yi.

As an initial approach to this problem [1,6], one might consider the Kullback-
Leibler divergence (KL-div) loss between the predicted proportions and the true

proportions, given as DKL

(
Y ∥ Ŷ

)
=

K∑
k=1

Y k · log
(
Y k

Ŷ k

)
, with Ŷ = 1

N

∑N
i=1 ŷi.

However, note that the DKL(Y ||Ŷ ) loss is somewhat ill-posed for the LLP prob-
lem as it is not only minimized in the desired scenario (ŷi = yi,∀i), but also in
cases where no information is learned about the class of a particular instance
(e.g., ŷi = Y,∀i is a global optimum). This is a common disadvantage of losses

4 This dataset and code relevant to this paper can be found in GitHub

https://github.com/carolina-pacheco/LLP_multiclass_cell_detection/
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that operate directly on the aggregated information Ŷ (i.e., bag-level losses). In
the literature this has not been reported as a problem [6,1,17], likely because they
have studied artificial LLP scenarios where bags of instances can be randomly
drawn from large datasets, with direct control over the bag sizes, thus provid-
ing enough bag diversity for training. For the application of LLP to real-world
settings, we propose a new loss, the VP loss, designed to infer instance-level
labels during training by matching the distributions of predicted and GT class
labels, as opposed to relying only on aggregated information.
VP loss to learn from proportions. We are interested in matching the dis-
tribution of predicted labels q(ŷ) to the distribution of GT labels p(y). In super-
vised learning, annotations directly define an assignment between the predicted

𝑝 𝒚

q(ෝ𝒚) ෝ𝒚

𝒚

𝑐(𝒚, ෝ𝒚)

Fig. 2. Distributions of in-
terest. p(y): GT labels,
q(ŷ): class predictions, and
c(y, ŷ): cost for moving a
unit of mass from y to ŷ.

label ŷi and the GT label yi of each instance, and
learning is achieved by minimizing the empirical ex-
pectation of a cost c(y, ŷ), that can be, for exam-
ple, the cross-entropy loss. In LLP we aim to do the
same, yet the label assignment is unknown. What
we do know, however, is the distribution of p(y).
Namely, given GT class proportions Y , we can write
p (y) =

∑K
k=1 Y

k · δ(y − ek), where ek ∈ RK cor-
responds to a canonical vector that is non-zero in
its k-th entry, and δ(·) represents the delta function
that is non-zero at the origin. Since we assume that
each cell belongs to one class, the support of p(y)
is concentrated on the vertices of the simplex (blue
dots in Fig. 2) and the corresponding probability mass associated with each
vertex (class) is defined by the entries of Y .

OT aims to find a transportation plan (i.e., assignment) of minimal cost
to match the probability mass between two distributions [25]. Although it is a
well-studied problem with numerous applications, it is intractable to solve in
the general case. However, here the structure of p(y) significantly simplifies the
formulation. In particular, given a transport cost function c(·, ·), GT proportions
Y , and predicted labels {ŷi}Ni=1, after approximating an analytic expectation
with an empirical expectation based on samples {ŷi}Ni=1 ∼ q, the OT problem
reduces to (see details in the supplement) the following linear program (LP)

max
Φ∈RK ,s∈RN

⟨Y, Φ⟩ − 1

N
⟨s,1N ⟩ s.t. si ≥ ϕk − c(ek, ŷi),∀(i, k) ∈ [N ]× [K], (1)

where 1N ∈ RN is the vector of all ones, ϕk is the k-th entry of Φ, si is the
i-th entry of s, and [N ] is the set of integers from 1 to N . The optimal label
assignment for the i-th cell is given by ek∗ , with k∗ ∈ argmax

k
{ϕ∗

k − c(ek, ŷi)}
and ϕ∗

k the k-th entry of the optimal value of Φ in Eq. (1).
Now, we would like to use gradient-based optimization to train our classi-

fier CΘC
(·), using as a loss function the expectation of c(·, ·) given the optimal

assignments. In particular, we need to compute the gradient of the loss with
respect to the output of the network ŷi. Note that (i) the value of this loss is
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by definition the same as the optimal value of OT, i.e., the solution to Eq. (1),
and (ii) the learnable parameters in Eq. (1) appear only in the evaluation of the
costs c(ek, ŷi), with ŷi = CΘC

(xi). Therefore, we need to compute the gradi-
ent of Eq. (1) with respect to c(ek, ŷi), and then the gradient of c(ek, ŷi) with
respect to ŷi can be obtained in closed form or via auto-differentiation. Given
the linear structure of the problem, the gradient of the loss with respect to the
constraints c(ek, ŷi) conveniently equals the optimal value of the dual variable
[20], and thus it is obtained directly from the computation of the loss, without
having to explicitly compute or store the assignments.
Connections to other LLP approaches. Current LLP approaches can be
divided into three categories: new losses [1,6]; pseudo-labeling strategies to al-
ternate with supervised losses [6,18,15]; and representation learning approaches
[17,24,30,16,26,19]. Our loss belongs to the first group, yet it enjoys advantages
similar to pseudo-labeling as it also infers instance-level information for training.

2.2 Deep Sparse Detector (DSD)

The LLP approach described in Sec. 2.1 assumes that cells have already been de-
tected in the image and that the corresponding features xi have been extracted.
Here, we focus on the problem of detecting cells and extracting features. To do
so, DSD leverages the sparsity of the imaged specimen, i.e. blood, to generate
a structured latent representation of the image, referred to as a sparse encoding
volume. This representation is spatially sparse, and its local features are discrim-
inative for cell classification. In absence of detailed annotations, we incorporate
reconstruction as an auxiliary task, which has been found useful for unsuper-
vised detection [13,31,21]. While this design is tailored to sparse images, which
can be reconstructed from localized feature maps, lensless imaging captures the
intensity of the diffraction pattern of the objects as holograms, and thus even
if the specimen is sparse, the recorded hologram is not. Fortunately, there exist
physics-based models for the diffraction process [14], which can be well approxi-
mated by a linear transformation I = T (H), where H is a real-valued hologram
and I is a complex-valued image (see Fig. 3). Therefore, we incorporate T as the
first layer of DSD, and its inverse as the last layer of the reconstruction head.
This strategy can be applied to other cases where images are approximately
sparse under invertible, differentiable transformations. Due to the limited res-
olution of lensless images and the small cell size, this detection task is closer
to keypoint estimation than to object detection, as the spatial localization of a
cell can be characterized by the location of its center. Lacking supervision, we
enforce sparsity by introducing structure into the model as described next.
Deep Sparse Encoder. Given an image I ∈ CL×L containing N objects,
the goal of the encoder is to generate a sparse volume as A = EΘE

(I), where
EΘE

corresponds to a sequence of complex-valued CNN layers followed by ReLU
non-linearities, and A ∈ Cd×L×L is the encoding volume composed of d complex-
valued feature maps. Unlike other works relying on heatmap annotations for
training [29,28,8], our encoder encourages spatially “peaked” representations by
means of a highly local version of softmax [3]. More specifically, we compute
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a heatmap at pixel (x, y) as HA(x, y) = LocalSoftMax(∥λA(·, x, y)∥22), where
∥A(·, x, y)∥22 is the “strength” of the detection at pixel (x, y) defined as the L2

norm squared of the encoding vector at (x, y), λ ∈ R+ is a hyperparameter
that controls the decay rate from the largest value, and the normalization of
the softmax is computed locally in a patch of size m × m centered at (x, y).
The LocalSoftMax equation is easily implemented with a sequence of point-wise
operations for the numerator, and then pooling for the denominator. To obtain
the sparsest possible representation for each object, we also apply thresholding
and non-maximum suppression (NMS) in small patches. We utilize the resulting
sparse mask as A′ = MA ⊙ A, where ⊙ denotes point-wise multiplication, and
MA(·) ∈ Rd×L×L represents a spatial mask which is constant across the first
dimension (features), and at each pixel contains the thresholded, NMS version
of HA. From this sparse encoding volume, A′ ∈ Cd×L×L, one can extract both
the location of the detected objects from the spatial support of A′, and their
encodings as xi = A′(·, xi, yi) ∈ Cd, for (xi, yi) in the support of A′.
Reconstruction head. We aim to reconstruct the input image from the output
of the encoder as Î = RΘR

(A′). Inspired by the common practice of generating
GT keypoint heatmaps by convolving a sparse mask with small, smoothing filters
[23,27], we use a sequence of complex-valued CNN layers with small filters to
parameterize RΘR

, thus limiting the spatial extent of the reconstructed cells.
We train the network with the Frobenius norm squared as a loss. Since the
recorded images correspond to holograms, we apply the inverse of the physics-
based transformation Ĥ = T −1(Î) to compute the loss in the hologram domain.
Classification head. From a cell encoding xi, the classifier aims to correctly
predict its class. Assuming that objects from distinct classes look different, DSD
encodings are expected to contain somewhat disentangled class information be-
cause they are trained to reconstruct the appearance of different cells. We thus
use a simple classifier (fully connected layers followed by ReLU non-linearities
and a softmax) and train it from label proportions, as described in Sec. 2.1.

3 Experiments

Mono.

Gran.

Lymp.

Fig. 3. Simulated (top) versus Real (bot-
tom) image crops. Synthetic cells (left),
holograms (middle), and holograms prop-
agated to the object plane via T (right).

Datasets. We evaluate our method in a
real [31] and a new synthetic WBC holo-
graphic dataset. Fig. 3 shows examples
from both. The real dataset contains
images from 33 donors, and it is an-
notated with the approximated propor-
tions of granulocytes, lymphocytes, and
monocytes (K = 3) for each donor. In
this dataset, the main evaluation met-
ric corresponds to mean absolute error
in the proportion prediction after hard
assignment [24], but we also use WBC
concentration as a proxy for detection evaluation. The synthetic dataset was

https://github.com/carolina-pacheco/LLP_multiclass_cell_detection/
https://github.com/carolina-pacheco/LLP_multiclass_cell_detection/
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generated modeling the geometric and optical properties of the WBC subtypes.
It simulates data from 500 subjects, divided in train, validation, and test sets
(200/100/200). The evaluation metrics correspond to precision, recall and f1-
score for detection, as well as classification accuracy.

LLP classification results. We implement two variants of the proposed VP
loss by using the squared loss (VP-L2) and the cross-entropy loss (VP-CE) as
cost functions in the OT problem. We compare them to bag-level losses (MSE
and KL-div [6]) and pseudo-labeling approaches (Feature-Label Matching (FLM)
[30], Prototypic Clustering (PC) [15], LLP-PLOT [18]) under the same model,
optimizer, learning rate, and number of epochs (see supplement for implemen-
tation details). We first train the encoder with the reconstruction loss, and then
the classifier. As usual, instance-level approaches are initialized by pretraining
with the KL-div, and hyperparameters are chosen as recommended by the au-
thors. Tables 1 and 2 report results for synthetic and real data, respectively.
Bag-level losses fail to learn discriminative features for synthetic data, generat-
ing high-entropy predictions (0.841 and 0.790 for MSE and KL-div, resp.) close
to the global class proportions (0.816 avg. entropy). In contrast, VP-L2 and
VP-CE lead to predictions with significantly lower entropy (0.162 and 0.196, re-
spectively). Similar trends hold for real data, where bag-level losses and simple
pseudo-labeling methods fail to recover cells from the least populated class.
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Fig. 4. Instance-level accuracy vs train-
ing time in synthetic data. Red circles
represent LLP-PLOT [16], for which dif-
ferent variants are explored (regularizer
weight γ and postprocessing strategies)

Our proposed loss, as well as LLP-
PLOT [18], consistently outperform the
KL-div baseline, with VP-CE achiev-
ing the best instance-level accuracy for
synthetic data, and VP-L2 the small-
est donor-level proportion prediction er-
ror for real data. LLP-PLOT performs
similarly to the VP loss for the best selec-
tion of parameters, however it is very sen-
sitive to the choice of regularizer weight
γ and postprocessing variants. Moreover,
the slow convergence of the Sinkhorn al-
gorithm leads to a significant increase in training time (see Fig. 4). In contrast,
the VP-CE loss achieves similar or better performance without additional hy-
perparameters and reduces the training time by one order of magnitude. Ad-
ditionally, experiments confirm the complementary nature of the VP loss with
representation learning LLP methods [17,30,19] (see details in the supplement).

Table 1. Classification accuracy in synthetic data for LLP approaches.

MSE KL-div FLM [30] PC [15] LLP-PLOT [18] VP-L2 VP-CE

Lymp. 0.00 0.00 0.00 0.00 65.41 59.35 66.80
Mono. 0.00 0.00 0.00 0.00 37.20 6.45 39.23
Gran. 100.00 100.00 100.00 100.00 82.48 84.80 83.24

Average 33.33 33.33 33.33 33.33 61.70 50.20 63.09
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Table 2. Mean absolute error of proportion prediction in real data for LLP approaches.

MSE KL-div FLM [30] PC [15] LLP-PLOT [18] VP-L2 VP-CE

Lymp. 6.94 6.21 28.91 40.67 5.84 5.37 4.71
Mono. 8.07 7.96 8.94 9.09 5.09 5.09 5.43
Gran. 6.69 9.51 37.85 43.87 6.37 6.26 7.11

Average 7.23 7.89 25.23 31.21 5.77 5.58 5.75

We also compare our approach to CSC priors [31], the state of the art for
multi-class cell detection in the real WBC dataset. It achieves 5.97 mean absolute
error, which is similar to the performance of VP-L2 and VP-CE in Table 2.
However, CSC priors exhibits several practical drawbacks: it requires images
of purified data obtained through specialized biochemical processes; it relies on
a large CBC database of 300K patients to model proportion priors; it requires
reconstruction as preprocessing; and it does not learn a representation of the cells
suitable for downstream tasks. In synthetic data, we outperform CSC priors for
proportion prediction with 4.90 and 4.25 absolute error for VP-L2 and VP-CE,
respectively compared to 8.95 for CSC priors.

Table 3. Mean absolute error of pro-
portion prediction in real data. (Init:
initialization, R: random, P: pretrained
with rec. loss). Classifier and encoder are
jointly optimized.

Type Encoder Init. Loss Error

Direct
regression

ResNet-152 [29] R KL-div 8.5
Ours R KL-div 7.6
Ours P KL-div 7.1

Heatmap
regression

C-FCRN [10] R KL-div 8.3
Ours R KL-div 7.9
Ours P KL-div 7.0

Classification
(oracle

detections)

Le Net [9] R KL-div 11.5
Le Net [9] R VP-L2 8.4
Le Net [9] R VP-CE 8.2

Ours R KL-div 9.7
Ours R VP-L2 7.3
Ours R VP-CE 7.6
Ours P KL-div 9.3
Ours P VP-L2 6.3
Ours P VP-CE 6.1

Comparison to proportion predic-
tion methods. We compare the pro-
posed detection-based approach to re-
gression and classification approaches
for class proportion prediction (given
oracle detections) in real data. We eval-
uate both, architectures used in the lit-
erature for these tasks, as well as our
encoder. Implementation details can be
found in the supplement, while Table
3 summarizes their performance. First,
regression approaches have limited per-
formance, probably due to the small
amount of annotations, as they tend to
predict the average proportions of the
training data. Thus, the introduction
of structure in the form of detection is
beneficial. Second, our encoder outper-
forms the ones proposed in the litera-
ture, even when both are randomly initialized and trained with the same losses.
Therefore, considering data availability in the architectural design is advanta-
geous. Third, initializing our encoder with weights learned by the reconstruction
task boosts performance (compare pretrained (P) to randomly initialized (R)
cases in Table 3). Thus, there is a positive contribution of using reconstruction
as an auxiliary task.
Detection results. We compare the detection performance of the proposed
DSD to Cellpose [22] (a popular pretrained model for general cell segmenta-
tion); (2) a baseline approach (which applies local softmax and NMS directly on
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the absolute value of the input image); and (3) CSC priors [31], previously pro-
posed for cell detection in lensless imaging. Detailed results can be found in the
supplement, with the following high-level findings: (i) Cellpose obtains the lowest
performance across all metrics, which supports the need of specialized models
for lensless imaging, (2) our model outperforms the baseline and achieves the
best precision, (3) CSC priors reaches the best performance in most metrics, yet
at the expense of additional data labeling and computational complexity.

4 Conclusion

We study LLP in a real-world application in which instances are naturally
grouped into bags and (noisy) proportion annotations are easily obtained. Re-
sults show that inference of instance-level information is critical during train-
ing. We propose a self-supervised detector and an OT-based loss that achieves
state-of-the-art results for weakly supervised classification and class proportion
prediction, with practical advantages with respect to prior work. Limitations.
Our detector trades recall for computational efficiency, so it might miss relevant
objects. Also, it relies on the assumption that images are sparse under a known,
differentiable transformation, thus it is not suitable for dense images in general.
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