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Abstract. In resource-limited settings, portable ultra-low-field (uLF, i.e., 0.064T) 
magnetic resonance imaging (MRI) systems expand accessibility of radiological 
scanning, particularly for low-income areas as well as underserved populations like 
neonates and infants. However, compared to high-field (HF, e.g., ≥ 1.5T) systems, 
inferior image quality in uLF scanning poses challenges for research and clinical use. 
To address this, we introduce Super-Field Network (SFNet), a custom swinUNETRv2 
with generative adversarial network components that uses uLF MRIs to generate 
super-field (SF) images comparable to HF MRIs. We acquired a cohort of infant data 
(n=30, aged 0-2 years) with paired uLF-HF MRI data from a resource-limited setting 
with an underrepresented population in research. To enhance the small dataset, we 
present a novel use of latent diffusion to create dual-channel (uLF-HF) paired MRIs. 
We compare SFNet with state-of-the-art synthesis methods by HF-SF image similarity 
perceptual scores and by automated HF and SF segmentations of white matter (WM), 
gray matter (GM), and cerebrospinal fluid (CSF). The best performance was achieved 
by SFNet trained on the latent diffusion enhanced dataset yielding state-of-the-art 
results in Fréchet inception distance at 9.08 ± 1.21, perceptual similarity at 0.11 ± 0.01, 
and PSNR at 22.64 ± 1.31. True HF and SF segmentations had a strong overlap with 
Dice similarity coefficients of 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08 for WM, GM, 
and CSF, respectively, in the developing infant brain with incomplete myelination, and 
displayed 166%, 107%, and 106% improvement over respective uLF-based 
segmentation metrics. SF MRI supports health equity by enhancing the clinical use of 
uLF imaging systems and improving the diagnostic capabilities of low-cost portable 
MRI systems in resource-limited settings and for underserved populations. Our code 
is made openly available at https://github.com/AustinTapp/SFnet. 
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1 Introduction 

Clinically, neuroimaging of infants is crucial for assessing risks in brain development, 
detecting brain injuries, diagnosing neurological conditions, planning interventions, 
and monitoring treatment progress. In research, magnetic resonance imaging (MRI) has 
also enabled the characterization of early brain development, mostly in high-resource 
regions [1-4]. However, MRI is rarely available as a screening test in children despite 
the increasing demand for radiation-free pediatric imaging [5]. In fact, among medical 
imaging systems, high-field (HF, i.e., ≥ 1.5T) MRI may be the most inequitably used 
due to high costs, complex operability with radiofrequency-shielded radiology suites, 
and the necessity for patients to travel to specialized clinics [6]. Thus, conventional HF 
MRI systems are rare or unavailable in resource-limited settings like the hospital 
infrastructure in Uganda, where this study’s data originates from, with only 10 MRI 
machines in a country of over 46 million inhabitants [6, 7]. 

Recent advancements in portable, ultra-low-field MRI (uLF MRI, i.e., 0.064T) 
technology has enabled imaging at the point of care and even around ferromagnetic 
materials [8, 9]. Compared to HF systems, uLF MRI offers additional advantages such 
as lower installation and maintenance costs, reduced power consumption, smaller space 
requirements, and elimination of cryogenic cooling [10, 11]. Moreover, uLF systems 
are great for children because of faster acquisition, lower acoustic noise, and open 
scanner designs, improving infant scanning success rates without sedation [12-16]. 
However, uLF MRI systems have weak sample signals, low signal-to-noise ratio 
(SNR), and poor contrast, leading to inferior image quality [9, 10].  

Super-resolution (SR) techniques, which produce higher-resolution images from 
lower-resolution scans, offer potential solutions for improving image quality [17-22]. 
SR methods employing convolutional neural networks (CNNs), generative adversarial 
networks (GANs), and transformers have shown breakthrough performance among 
various SR benchmarks [23]. CNN methods like AUTOMAP have enhanced image 
quality and SNR gains in diverse scenarios, including uLF MRI acquired in adults [24], 
while methods such as SMORE use a self-supervised approach to restore image quality 
by leveraging the innate high and low-resolution image information [25]. Pure CNN-
based methods are also tailored to include autoencoders, encoder-decoders, and GANs, 
which increase inference speed, expand the CNN’s receptive field, or capture rich 
texture details, respectively [23]. In the medical image domain, GAN SR approaches 
face challenges, such as hallucinations, and as in SOUP-GAN, are integrated with other 
methods for stabilization, thus outperforming previous work [26-28]. Further, 
transformer networks integrating reconstruction and super-resolution into two sub-
branches can produce motion-artifact-free SR images from degenerated MRI [29].  

In this study, we aim to use a single framework that enhances multiple aspects of 
uLF image quality metrics, including image contrast, SNR (Signal-to-Noise Ratio), and 
matched likeness to HF images; we refer to this as 'super-field' (SF) synthesis. Two 
approaches are closely related to our work: LoHiResGAN [19] and LF-SynthSR [21], 
but these methods focus on SR alone. LoHiResGAN integrates ResNet downsample 
and upsample blocks into a GAN architecture for low-resolution to high-resolution 
MRI translation that considers image structure and texture similarity. An extension of 
SynthSR, LF-SynthSR [21], applies 3-D U-net with a semantic segmentation loss in the 
architecture for predicting SR outputs from low-field MRI. LF-SynthSR incorporates a 
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synthetic data generator during training to present diverse image appearances. Although 
SR for uLF-MRI systems have been successful in adult cohorts [18-22], for infant and 
neonate populations, SR has only been explored by combining three orthogonal 
(coronal, sagittal, and axial) uLF scans to produce isotropic, high-resolution images; 
this recombination method is commonly known as SR reconstruction (SRR) [30-33]. 
While SR in [19] and [21] primarily focus on improving resolution, our aim for SF 
synthesis extends SR approaches by addressing image quality (SNR, perception, and 
structural representation). Image quality is especially critical for imaging infant brains, 
which exhibit poor contrast from incomplete myelination in healthy, developing brain 
structures. Therefore, SR differs from our SF approach, which yields resultant MRIs 
that exhibit enhanced quality and fidelity beyond SR and SRR outputs, thus making the 
original uLF images more suitable for clinical interpretation and analysis, as in Fig. 1.  

Novelty and Contribution We present a novel SF MRI enhancement method that 
increases the image quality of emerging portable uLF MRI scans with the aim to rival 
the perceptual information offered by HF MRI at lower cost and at the point of care of 
underserved populations. By separating SF from SR, our proposed method, super-field 
network (SFNet), enhances uLF MRI quality by combining transformer attention 
mechanisms with CNN feature extraction in GAN-like framework. An additional 
novelty in our approach is the dual channel latent diffusion process that generates paired 
(uLF-HF) synthetic images to supplement our small dataset, a typical problem in infant 
imaging made trickier by the difficulty of acquiring uLF MRIs in limited-resource areas 
like Uganda. We compare our approach, SFNet, with three state-of-the-art methods, 
LoHiResGAN [19], LF-SynthSR [21], and SwinUNETRv2 [34], by quantitative 
perceptual metrics and anatomical segmentation analyses to demonstrate SFNet’s 
potential contribution to global health equity via empowering low-cost portable MRI 
to offer clinical insight similar to that of less accessible HF MRI.  
 

 

Fig. 1. uLF (0.064T) images acquired in 3 directions orthogonally (axial, coronal, and sagittal); 
all 3 are used in traditional super resolution reconstruction (SRR), which is the image that serves 
as the input for our SFNet, which outputs a sharper, contrast enhanced, 1 x 1 x 1 mm³ image 
synthesized through the super-field (SF) process.  
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2 Methods 

2.1 Data Augmentation by Dual Channel Latent Diffusion 

While latent diffusion has been used for MRI synthesis (e.g., T1 to T2), it has not been 
applied to a 2 channel (uLF-HF) paired data generation task [35]. As our infant data is 
small (n = 30), we utilize latent diffusion to generate images in a novel 2-channel 
approach stemming from methods described in [36]. A 3D variational autoencoder 
(VAE) maps a 2 channel (1 channel uLF and 1 channel HF) volume, x ∈ R2×H×W×D,with 
height (H), width (W), and depth (D), to a 6×28×28×28 mm3 uLF-HF latent 
representation, z, where z ∈ R6×H×W×D,. The VAE decoder synthesizes a paired, 2 
channel, uLF-HF image of size x from z, which is a probabilistic representation of the 
anatomical structure and features of the uLF and HF 2 channel MRIs. The VAE acts as 
a perceptual compression model trained through a combination of perceptual loss and 
a patch-based adversarial objective to yield images that look similar to input data [36]. 
After VAE training, latent noise of size 6×28×28×28 mm3 are used to train the diffusion 
model that learns the data distribution 𝑝(𝑥) by denoising a normally distributed 
variable. For synthesis, we use a reweighted variant of the variational lower bound on 
𝑝(𝑥), mirroring denoising score-matching. During inference, a paired uLF-HF volume 
is produced from random, z-shaped noise. For latent diffusion network training, we use 
an Adam optimizer with a learning rate of 0.0001. A batch size of 1 is used for the VAE 
and a batch size of 6 is used for the diffusion model, which is a diffusion U-Net. The 
VAE is trained for 1,000 epochs and the diffusion U-Net is trained for 10,000 epochs. 
After dual channel image generation, a perceptual evaluation is conducted to assess the 
realism of synthesized images compared to the real images from the uLF-HF dataset. 
Evaluation metrics include Fréchet Inception Distance (FID) for gauging similarity and 
realism between real and synthetic images and Maximum Mean Discrepancy (MMD) 
to assess preservation of image characteristics. Synthetic image features were evaluated 
with a pretrained RadImageNet [37] and compared to image features from the input, x. 
Synthetic images were deemed adequate if they demonstrated FID of less than 16 and 
an MMD of less than 0.005 based on RadImageNet evaluation. The top 60 images 
meeting our quality metrics were subsequently added to the real uLF-HF paired image 
dataset to enhance SFNet training with a diverse range of realistic representations. 
 

 

Fig. 2. uLF (0.064T) images are translated to SF MRI with methods prioritizing image perceptual 
quality via GAN components and supplement data with generated images. 
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2.2 Super-Field Synthesis 

We propose SF enhancement on uLF images using SFNet, an enhanced swinUNETRv2 
[34] that acts as the generator within a GAN framework. Fig. 2. shows an overview of 
the approach. Briefly, swinUNETRv2’s transformers and moving-window scheme 
support global image features. Further, depth feature extraction and multi-contrast 
feature fusion are contained within swin transformer residual blocks, each using 
multiple swin transformer layers (STL) for local attention and cross-window interactive 
learning. STL multi-head self-attention blocks and its multi-layer perception extract 
features used by multiple cascaded multi-scale aggregation blocks (MAB) [34]. MAB 
include a spatial adaptation block and joint residual feature aggregation block. 
Additionally, we utilize a discriminator in conjunction with the feature extraction 
performed natively by swinUNETRv2. Thus, output images are evaluated globally to 
yield more realistic images with limited anti-aliasing because of adversarial, SSIM, and 
perceptual component losses. The network’s overall loss is defined by Equation 1.  

      𝒯 =  min
𝐺

max
𝐷

 (𝜆1ℒ𝑠𝑠𝑖𝑚(�̂�, 𝑦) +  𝜆2ℒ𝐴𝑑𝑣(1 − 𝐷(�̂�, 𝑦)) +  𝜆3ℒ𝑃𝑒𝑟𝑐𝑒𝑝𝑡(�̂�, 𝑦))  (1) 

Where 𝑦 is the ground truth HF image, �̂� is the SF image predicted from the uLF image. 
The  𝜆1,  𝜆2, and  𝜆3 terms are 2, 0.25 and 2, respectively. ℒ𝑃𝑒𝑟𝑐𝑒𝑝𝑡 represents the 
perceptual loss computed using a frozen-weight, pretrained deep neural network; in this 
case AlexNet. ℒ𝐴𝑑𝑣 represents the discriminator-based loss, a Patch-GAN discriminator 
based on Pix2PixHD, which learns in conjunction during training of the SFNet. 𝒯 is 
the total function to optimize during training. All losses were computed volumetrically. 

SFNet was curated through numerous ablation studies. In the first study, we pre-
train SFNet in a self-supervised manner with 1,500 T2-weighted HF (1.5 or 3T) MRIs 
(mean age 16 months, 52% female) from developing Human Connectome projects’ 
(dHCP) open-source database [38]. Then, we fine-tune SFNet using either the original 
dataset (n=30) or the dataset supplemented by latent diffusion-generated data (n=90). 
In the second study, publicly available swinUNETR pre-trained weights from [39] were 
loaded into SFNet, which was then pre-trained using dHCP’s T2-weighted MRIs before 
training with the original (n=30) or supplemented datasets (n=90). In these prior 
studies, SFNet was also trained without GAN components (i.e., as swinUNETRv2). 
Finally, SFNet and SFNet without GAN components (i.e., swinUNETRv2) was trained 
from scratch with the original dataset (n=30) or latent diffusion-supplemented dataset 
(n=90). Our repository details training code for all models and their hyperparameters.  

3 Experiments 

3.1 Data 

All images were acquired under IRB approval using a combination of uLF and HF MRI 
scanners from Makerere University in Kampala, Uganda. T2-weighted uLF images 
(spin echo TR/TE 1.5s/5ms) were obtained using the SWOOP (Hyperfine) portable 
0.064T MR scanner as a trio of orthogonally acquired (axial, sagittal, and coronal 
orientation) anisotropic 3D T2-weighted MR images with in-plane resolution of 1.5mm 
x 1.5mm and 5 mm in slice selection direction. Paired T2-weighted HF images were 
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also acquired as a trio of orthogonal anisotropic 3D T2w MR images with in-plane 
resolution of 0.5mm x 0.5mm and 4.5 mm in the slice selection direction from 1.5T 
MAGNETOM Sempra (Siemens Healthineers) (TR/TE 5s/95ms) scanners. The healthy  
cohort of 22 male and 48 female subjects mean age was 381±17 days old at scan time. 
Images were quality assessed for motion or banding artifacts. Images with severe 
distortions that failed quality checks, in both uLF and HF MRI, were removed from the 
study. After assessing image quality, 30 healthy patient pairs of HF and uLF T2 MRIs 
were included in the study; acquired orthogonal uLF images are shown in Fig. 1.     
 
3.2 Super Resolution Reconstruction (SRR) 

Each subject’s trio of orthogonally acquired uLF and HF images was reconstructed 
using Advanced Normalization Tools (ANTS) multivariate template construction tool 
[40, 41] as outlined in [17]. The tool solves a group-wise registration for the trio of 
images through iterative diffeomorphic transformations to generate a single, isotropic, 
super resolution reconstructed (SRR) volume with combined information from all three 
orthogonally acquired images. As shown in Fig. 1, after ANTS reconstruction, HF 
images have voxel grid spacing of 1.0x1.0x1.0mm³, while uLF images have a voxel 
grid spacing of 1.5x1.5x1.5mm³. Following SRR for both HF and uLF images, the uLF 
SRR volumes were rigidly registered to their SRR HF counterpart to ensure alignment 
and yield a uLF SRR image with voxel grid spacing of 1.0x1.0x1.0mm³. Throughout 
the manuscript, and for the remainder of the paper, HF SRR and uLF SRR volumes are 
referred to as HF and uLF, respectively; orthogonal images were termed explicitly. 
 
3.3 SFNet Implementation and Results 

We compare results from SFNet with the vanilla SwinUNETRv2 [34], LoHiResGAN 
[19] and LF-SynthSR [21]. LoHiResGAN and LF-SynthSR, are the only known open-
source, pretrained models affirmed by authors as usable for uLF-HF synthesis ‘off-the-
shelf’. Results are evaluated by the following perceptual metrics: FID, SSIM, PSNR, 
and learned perceptual image patch similarity (LPIPS). In addition, quantitative 
comparisons of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) 
segmented from the uLF and SF images were compared to segmentations from ground 
truth HF images obtained by iBeat, a state-of-the-art infant brain segmentation pipeline, 
using dice similarity coefficient (DSC) and relative volume error (RVE) metrics [42]. 
Significance was assessed at p < 0.05 with the Wilcoxon signed rank test. Training and 
inference were done on an NVIDIA A5000 (24 GB) GPU. Networks were implemented 
in the PyTorch-based framework MONAI. For each task, SFNet was trained for a total 
of 5,000 epochs. All inference times were under 1 minute; SF-Net requires 8.23 GB, 
SwinUNETRv2 requires 8.23 GB, LoHiResGAN requires 23.61 GB, and SynthSR 
requires 1.22 GB of GPU memory to generate MRIs of size (192, 192, 192).  

Table 1 displays comparative results of our tested methods. The best SFNet used 
initial weights from [39], was pre-trained with dHCP’s T2 MRIs [38] and trained on 
the supplemented dataset (n=90), achieving state-of-the-art results in FID, LPIPS, and 
PSNR. Furthermore, when compared to HF segmentations calculated by iBeat, those 
from SF volumes demonstrated significant improvement over original uLF MRI. 
Specifically, DSC for WM, GM, and CSF were 0.71 ± 0.1, 0.79 ± 0.2, and 0.73 ± 0.08, 
respectively. These coefficients represented improvements of 166%, 107%, and 106% 
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over the corresponding uLF-based segmentations. Figure 3 shows qualitatively the T2 
images and their segmentations (WM=Blue, GM=Green, CSF=Red) output by iBeat. 
 

 

Fig. 3. Segmentations obtained using iBeat; from left to right the SRR uLF MRI, the true HF 
MRI, our best SFNet MRI, SFNet MRI and a swinUNETRv2 SF MRI. † denotes pretraining. 

Table 1. Model performance for generated images compared to ground truth high-field images. 
Only best performing SFNet models for multiple training configurations are shown (typically 
n=90). An * indicates significance over previous network performance; † denotes pretraining. 

Model FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑ DSC ↑ RVE ↓ 
SFNet (n=90)† 9.08±1.21* 0.84±0.07* 0.11±0.01* 22.64 ±1.31* 0.74±0.03* 0.14±0.02* 

SFNet (n=30)† 11.10±1.30* 0.74±0.17* 0.14±0.11* 19.64 ±1.21* 0.68±0.09* 0.24±0.04* 

SFNet (n=90) 13.81±1.34 0.52±0.21 0.22±0.08 15.71 ±1.21 0.60±0.04 0.27±0.11 

swinUv2 (90)† 14.12±1.30* 0.56±0.27* 0.24±0.11* 13.64 ±3.21 0.58±0.19 0.28±0.13 

swinUv2 (90) 24.90±3.04 0.44±0.23 0.29±0.13 16.43 ±2.57 0.59±0.15* 0.27±0.09* 

LHResGAN 26.43±3.52 0.41±0.25 0.31±0.11 16.66 ±2.35 0.34±0.05 0.38±0.13 

LF-SynthSR 33.96±4.52 0.48±0.17 0.35±0.12 16.34 ±2.31 0.37±0.08 0.34±0.12 

uLF SRR MRI 80.21±24.7 0.43±0.13 0.43±0.16 12.66 ±0.59 0.48±0.15 0.30±0.12 

4 Discussion 

In this study, we introduced SFNet, a novel SF MRI enhancement method designed to 
extend the benefits of MRI to underserved populations and resource-limited settings. 
In addition, SFNet can increase the clinical utility of emerging uLF imaging systems, 
particularly for low-cost portable MRI systems. Generally, in MRI, and especially in 
low-SNR uLF MRI, infant brains pose unique challenges due to incomplete 
myelination and low contrast between brain structures. Our SFNet focuses on elevating 
image quality, in addition to a more conventional SR reconstruction, to rival the 
perceptual information offered by HF MRI systems as shown by the significant boost 
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in perceptual metrics, as well as in the segmentation of infant brain structures. For this 
purpose, we designed a network that combines attention mechanisms with CNN feature 
extraction via a transformer-based network with GAN components. Additionally, our 
approach incorporates a dual-channel latent diffusion process to generate paired uLF-
HF synthetic images and enhance small datasets, a typical problem in data collection 
from underrepresented populations in resource-constrained environments. By focusing 
on SF enhancement rather than classic SR, SFNet performed significantly better than 
prominent methods for image synthesis and SR reconstruction. Notably, SFNet reached 
state-of-the-art results for perceptual metrics e.g., average FID improved from 80.2 to 
9.08 for uLF vs. SF MRI with an associated improvement in average DSC from 0.48 to 
0.74, respectively. The use of uLF scanners supplemented with SF techniques to 
enhance scan quality presents a viable solution in such settings. We acknowledge our 
limitations regarding dataset size but obtaining paired HF data from resource-limited 
regions like Uganda, is difficult, and as uLF MRI technology is emerging, there are no 
public uLF datasets available. Future research will include more datasets and explore 
model applications in diverse cohorts, including patients with pathological conditions. 

5 Conclusion 

Our study highlights the transformative potential of super-field MRI enhancement to 
advance healthcare equity by bridging the gap in diagnostic capabilities between HF 
and uLF MRI systems. The latter have the advantage of low-cost, portability, and 
usability in ferromagnetic environments. However, they lack in image quality due to 
low SNR and contrast. By leveraging attentions mechanisms with GAN components, 
and dual channel latent diffusion-driven image augmentations, SFNet significantly 
improve the image quality and the quantitative information in uLF MRIs. As we 
demonstrated with data acquired from Ugandan infants, we aim to empower healthcare 
providers in resource-limited settings to deliver quality care and improve health 
outcomes for underserved populations worldwide. 
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