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Abstract. In the field of computational histopathology, both whole slide
images (WSIs) and diagnostic captions provide valuable insights for mak-
ing diagnostic decisions. However, aligning WSIs with diagnostic captions
presents a significant challenge. This difficulty arises from two main fac-
tors: 1) Gigapixel WSIs are unsuitable for direct input into deep learning
models, and the redundancy and correlation among the patches demand
more attention; and 2) Authentic WSI diagnostic captions are extremely
limited, making it difficult to train an effective model. To overcome
these obstacles, we present PathM3, a multimodal, multi-task, multiple
instance learning (MIL) framework for WSI classification and caption-
ing. PathM3 adapts a query-based transformer to effectively align WSIs
with diagnostic captions. Given that histopathology visual patterns are
redundantly distributed across WSIs, we aggregate each patch feature
with MIL method that considers the correlations among instances. Fur-
thermore, our PathM3 overcomes data scarcity in WSI-level captions by
leveraging limited WSI diagnostic caption data in the manner of multi-
task joint learning. Extensive experiments with improved classification
accuracy and caption generation demonstrate the effectiveness of our
method on both WSI classification and captioning task.
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1 Introduction

Histopathology remains the gold standard for diagnosing a wide range of can-
cers[31, 10]. With the rise of deep learning techniques, computational histopathol-
ogy has made remarkable advances[25, 22], especially in training models on gi-
gapixel whole slide images (WSIs) from Hematoxylin and Eosin (H&E)-stained
specimens [27]. Pathologists typically write diagnostic captions informed by their
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analysis of WSIs. These captions contribute valuable insights to the diagnostic
process. The potential of utilizing such expert knowledge has increasingly at-
tracted interest in developing deep learning models that can process both WSIs
and captions to yield more comprehensive and interpretable diagnostic outcomes.

Recent vision-language models have achieved significant success in nature
images and texts [16, 1, 11, 12, 28]. Among these, the query-based transformer
architecture has been particularly effective due to its capability to capture fine-
grained alignment between visual and textual data[1, 11]. Inspired by these de-
velopments, the trend towards multimodal learning combining image and text
modalities has expanded into the medical domain[20, 29, 13, 15, 19]. Based on
these prior studies, we aitm to adapt the query-based transformer to the domain
of computational histopathology, with a special focus on the fusion of WSIs and
WSI-level diagnostic captions. Nevertheless, integrating WSIs with WSI-level
diagnostic captions presents unique challenges. First, WSIs are not suitable for
direct input into deep learning models due to their immense size. Moreover,
unlike natural images, which are normally independently and identically dis-
tributed, the patches extracted from WSIs exhibit redundancy and correlation,
which demand specific attention or processing techniques. Second, reliable WSI
diagnostic captions require specialized pathologists and are limited by privacy
concerns, leading to a scarcity of such captions vital for training effective models.

Multiple Instance Learning (MIL) serves as a popular solution to the first
challenge[26]. It processes the instances derived from a “bag” as inputs and pre-
dicts the bag-level label. Each WSI is considered as a “bag” and the extracted
patches are regarded as instances within this bag. Considering the correlations
among instances, we employ an aggregation mechanism to combine instance fea-
tures into bag-level representation, which can then be used as the input for a
query-based transformer for modality fusion. Existing studies mainly address the
shortage of WSI-level captions by developing datasets through the use of books,
articles, and web sources to compile large-scale histopathology image-caption
pairs [6, 7]. However, these efforts generally yield captions limited to the patch
level rather than the WSI level. In response, we propose a multi-task joint learn-
ing framework that supports both WSI classification and captioning task. This
framework aims to maximize the utility of limited captions and enhance learning
efficiency and predictive accuracy by leveraging multimodal data sources.

To tackle above challenges, we propose PathM3, a Multimodal, Multi-task,
Multiple instance learning framework for histopathology image analysis. PathM3
facilitates image-text alignment at the WSI level and is designed to deliver en-
hanced performance for WSI classification and captioning, even with limited text
data during training. Our contributions can be summarized as follows. (1) WSI-
level image and text modality fusion: PathM3 adapts a query-based trans-
former to effectively align WSIs with their diagnostic captions, which is pivotal
for achieving precise and coherent multimodal understanding in histopathology
analysis. (2) Instance correlation aggregation: Our aggregation mechanism
learns the correlation among instances within WSIs during the multimodal data
fusion process, ensuring that spatial redundancy and contextual relationships
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are utilized to enhance diagnostic accuracy. (3) Efficient utilization of lim-
ited WSI captions: Our framework can utilize limited WSI caption data in
the training process, significantly improving classification precision and caption
generation, which is a capability absent in most current models.

2 Related Work

Current MIL methods can be broadly categorized into two types: bag-level and
instance-level. Bag-level MIL transforms instances into low-dimensional embed-
dings, aggregating these into bag-level representations for analytical tasks, i.e.
ABMIL[8] and TransMIL[17]. Some other existing methods perform image-text
alignment at the instance level, such as CITE[29] and MI-Zero[13]. Our work is
distinct from these works as it seeks alignment at the bag level. We aim to fully
utilize the contextual information within WSIs, thereby enabling a more compre-
hensive interpretation consistent with the diagnostic captions typically drawn by
pathologists at the WSI level. Vision-language models are emerging for natural
images and texts, i.e., Clip[16] and Flamingo[1]. A notable method, Blip2[11],
builds on this foundational work by proposing a query transformer that nar-
rows the gap between visual and textual data and achieves promising results.
This multimodal learning paradigm has achieved certain success in applications
within the histopathology field, such as CITE[29], MI-Zero[13], FSWC[15]. How-
ever, these approaches either focus on captions at the patch level[13], or the
text they use is simple category names[29, 13] or generated by Large Language
Models(LLM)[15], without considering the integration of WSIs with WSI-level
diagnostic captions. Our approach takes a significant step forward by facilitating
the fusion of WSIs with diagnostic captions at the WSI level, thereby enriching
medical image analysis with a more complete and contextual approach.

3 Method

The overall framework of PathM3 is illustrated in Figure 1, with each component
introduced in detail subsequently.

Problem Formulation Consider a dataset comprising a set of N × WSIs
denoted by S = {S1, S2, . . . , SN}. Corresponding to each WSI Si, there exists a
WSI-level caption T = {T1, T2, . . . , TN} and a categorical label yi drawn from
Y = {1, . . . , C}, where C represents the total number of distinct categories. For
the classification task, the sets S and T serve as inputs to our model, which
then aims to accurately predict the class labels Ŷ . The captioning task entails
the generation of predicted captions T̂ based solely on S as the input.

Correlation of each instance Each WSI Si consists of M patches, which can
be denoted by P = {P1, P2, . . . , PM}. To simplify the following learning task, we
utilize a frozen image encoder to extract features for each patch. This means that
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Fig. 1. PathM3 overview. A WSI is fed into a frozen image encoder to generate image
embeddings. These embeddings then pass through a correlation module before being
fed into a query-based transformer, in which the learnable query embeddings interact
with the textual embeddings using self-attention and with image embeddings using
cross-attention. The outputs of these queries are then utilized for classification via a
linear classifier and for generating captions with a frozen LLM.

each WSI can be represented as a set of embeddings E = {E1, E2, . . . , EM} ∈
RM×d where M denotes the number of patches and d represents the dimensions
of each embedding. TransMIL[17] has demonstrated that applying self-attention
mechanisms can effectively learn the correlation among multiple input instances.
Inspired by this, we incorporate a self-attention mechanism into our correlation
module to perform information integration. The computation can be formulated
as follows,

E = MSA (LN (E)) +E, (1)

where MSA stands for Multi-head Self-Attention and LN denotes Layer Norm.
However, in WSIs, each bag may contain a large number of instances (M >
1000). Directly computing self-attention among instances results in a time com-
plexity of O(M2), which is computationally intensive. Therefore, we employ the
Nystrom approximation of attention[23], which can be defined as:

softmax

(
Q̃KT√

dq

)(
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(
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))+

+ softmax
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dq

)
, (2)

where Q̃ and K̃ are the m selected landmarks from the original n dimensional
sequence of Q and K, and A+ is a Moore-Penrose pseudoinverse of A.

WSI and Caption Fusion We utilize a query-based transformer to estab-
lish a connection between WSIs and their corresponding captions. Similar to
Flamingo[1] and Blip2[11], this module takes K learnable query embeddings as
inputs. Initially, these queries interact with each other through self-attention
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layers. When textual data is available, the query further engages with textual
information within the same self-attention layers. Following self-attention, the
queries proceed to interact with image features via cross-attention. The output
of this module is a set of K integrated visual-text vectors, with each vector cor-
responding to a specific query embedding. After passing through N blocks, these
output query vectors are then fed into various specialized modules, tailored for
specific tasks. Since our query-based transformer adds cross-attention layers to
BERTbase[4], similar to Blip2[11], we initialize it with the pre-trained weights
from the first stage of Blip2[11].

Multi-task Joint Learning TieNet[20] leverages multi-task joint learning on
X-ray images. We extend this approach to the domain of WSIs. Our PathM3 em-
ploys a multi-task joint learning framework by using WSIs as the sole input for
inference, while taking advantage of both WSIs and captions during the training
phase. This strategy allows us to harness the synergistic effects of multi-modal
data, resulting in improved accuracy for both classification and captioning task.
Specifically, for the classification task, we introduce both WSIs and captions
into our fusion module, which outputs K query embeddings that encapsulate
combined visual-textual information. Subsequently, each of these output query
embeddings is individually passed through a linear classifier to generate K cor-
responding logits. Then, the classification prediction pi is obtained by averaging
these K logits across all query embeddings. To optimize the classification per-
formance, we employ the cross-entropy function LC , which allows us to compute
the classification loss:

LC = −
C∑
i=1

yi log(pi), (3)

where pi denotes the predicted classification outcome and the ground truth label
is given by yi. C represents the total number of distinct categories in the dataset.

In the captioning task, our approach involves inputting WSIs solely into
the query-based transformer, where the output query embeddings interact with
visual information through cross-attention. It is important to note that text data
is not introduced into the query transformer during this process. These query
embeddings, now enriched with visual details, are then fed into a frozen LLM
(e.g., FlanT5[3]) to leverage its well-established generative language capabilities.
Captions in this scenario are employed exclusively as the generational targets for
the LLM. Our optimization efforts are geared towards the minimization of the
generative loss, denoted as LG, which is calculated based on the output of the
LLM. Since our framework is a multi-task framework, by combining LC and LG,
the final objective function Loverall for the proposed method can be formulated
as:

Loverall = αLC + (1− α)LG, (4)

where α is added to balance the large difference between the two loss types.
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4 Experiments and Results

4.1 Dataset

In our study, we employ the PatchGastric dataset [18], which consists of 991
WSIs, sourced from the surgical files of individual patients. This dataset is
selected as it is among the few publicly accessible datasets providing high-
resolution histology images coupled with WSI-level captions, a requisite for our
research. The PatchGastric dataset contains 9 gastric adenocarcinoma subtypes.
Drawing on insights from CITE[25], our study on the PatchGastric dataset,
which includes 9 gastric adenocarcinoma subtypes, focuses on three main ones:
“well differentiated tubular adenocarcinoma”, “moderately differentiated tubu-
lar adenocarcinoma”, and “poorly differentiated adenocarcinoma”. The dataset
is randomly split into three parts: training (20%), validation (40%), and testing
(40%), to mimic the scenario of having limited WSI captions in the real world.

4.2 Comparison with state-of-the-art methods

We compare our PathM3 with other baseline methods on WSI classification
tasks under the settings of image only inference and image & text inference.
All experiments are run three times with different random seeds. As shown in
Table 1, PathM3 achieves an average accuracy of 86.40%, outperforming all other
methods by at least 4.08% in accuracy. These results empirically demonstrate the
effectiveness of utilizing a query-based transformer to leverage the multimodal
relationships within the WSIs and their captions. Considering that captions may
not always be available in real-world scenarios, we also evaluate PathM3 under
the condition of using only images for inference. Results in Table 1 show that
PathM3 obtains an average accuracy of 71.48%, surpassing the comparative
methods by up to 4.81%.

The performance of our PathM3 in captioning task is summarized in Table 2,
where it is compared against a set of baselines reported in [18]. Our method
surpasses all baselines by a significant margin across all three metrics for image
captioning, namely BLEU@4, METEOR, and SPICE. With PathM3, a BLEU@4
score of 0.520 is achieved, which reflects a marked improvement in the precision
of generated textual descriptions over the best baseline, which scores 0.342. In
terms of assessing the alignment with reference captions, the METEOR score
of our PathM3 reaches 0.394, exceeding the previously highest score of 0.316.
Lastly, for the SPICE metric, which evaluates the semantic propositional content
of the generated captions, sees a jump to 0.591 with PathM3, distinctly outper-
forming the best baseline score of 0.393. These empirical results convincingly
demonstrate the efficacy of PathM3 in generating coherent and contextually ac-
curate captions, which have the potential to aid pathologists and enhance the
interpretability of deep learning models.
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Table 1. Classification results comparison on PatchGastric dataset [18]. The accuracy
is reported as mean ± standard deviation. Best results are marked in bold.

Data modality Method Accuracy (%)(Inference)

image only

ABMIL[8] 66.67± 2.63
CLAM[14] 67.83± 1.12
DSMIL[9] 69.02± 0.42

TransMIL[17] 67.48± 1.16
CITE[29] 69.63± 0.91

ILRA-MIL[21] 70.16± 1.11
PathM3 (Ours) 71.48 ± 1.30

image & text

MCAT[2] 80.88± 0.58
MOTCat[24] 82.28± 0.54
CMTA[30] 81.23± 0.62

PathOmics[5] 81.32± 0.79
PathM3 (Ours) 86.40 ± 0.21

Table 2. Comparative performance in captioning of PathM3 against baseline meth-
ods[18]. BLEU@4, METEOR, and SPICE scores are presented as mean ± standard
deviation. Best results are marked in bold.

Method BLEU@4 METOR SPICE
DenseNet121 x20 p3x3[18] 0.310± 0.020 0.307± 0.009 0.382± 0.005

EfficientNetB3 x20 p3x3[18] 0.315± 0.028 0.293± 0.016 0.359± 0.017
DenseNet121 x20 pavg[18] 0.324± 0.011 0.310± 0.001 0.377± 0.008

EfficientNetB3 x20 pavg[18] 0.342± 0.021 0.316± 0.012 0.393± 0.008
PathM3 (Ours) 0.520 ± 0.011 0.394 ± 0.006 0.591 ± 0.011

4.3 Ablational studies

Table 3 presents the results of an ablation study. This study is designed to as-
sess the influence of various data modalities for inference and multi-task joint
learning. The study also compares performance with and without the correlation
module. Analyzing our PathM3 model without correlation, we observe that the

Table 3. Ablation study on the classification accuracy with and without correlation
under single-task and multi-task settings with various data modalities.

Data modality Correlation Multi-task Accuracy (%)(Inference)

image only

68.59± 0.72
✓ 69.07± 1.46

✓ 70.88± 1.85
✓ ✓ 71.48 ± 1.30

text only 79.79± 1.25

image & text 84.60± 0.91
✓ 86.40 ± 0.21
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model achieves an accuracy of 68.59% when only images are used in a single-task
setting. Incorporating multiple tasks into the training pushes the accuracy up to
69.07%. We find that using only the textual data modality yields 79.79%, which
highlights the value of the textual information provided by pathologists’ cap-
tions for classification. Notably, the combination of image and text data results
in an accuracy of 84.60%, underlining the joint effect of multimodal learning.
Upon introducing the correlation mechanism within PathM3, a marked increase
is observed across all modalities. The single-task image classification accuracy
improves to 70.88%, and further enhancement is noticeable with multi-task learn-
ing, yielding an accuracy of 71.48%. Importantly, the fusion of image and text
in an integrated, correlated framework achieves an accuracy of 86.40%. This
outcome confirms the pivotal role of the correlation mechanism in effectively
utilizing and integrating multimodal data to improve classification performance.

Table 4. Ablation study on the effects of correlation and multi-task joint learning on
the captioning task. Best results are marked in bold.

Correlation Multi-task BLEU@4 METEOR SPICE
0.503± 0.006 0.386± 0.002 0.579± 0.005

✓ 0.508± 0.012 0.388± 0.005 0.582± 0.011
✓ 0.508± 0.169 0.388± 0.006 0.591 ± 0.006
✓ ✓ 0.520 ± 0.011 0.394 ± 0.006 0.591 ± 0.011

Table 4 provides insights from an ablation study that evaluates the impact
of two key components on the captioning performance: the correlation module
and the multi-task joint learning setup. By empirically adding or omitting these
elements, we can observe their individual and combined contributions to the
performance metrics. From the results, it is evident that both components offer
significant value to the captioning task. The inclusion of the correlation module
alone led to a notable performance boost, with BLEU@4 scores rising from 0.508
to 0.520, and an increase in the SPICE metric to 0.591. The use of a multi-
task learning framework also shows a positive effect, particularly when used in
conjunction with the correlation module, yielding the highest recorded metrics
across all categories: BLEU@4 (0.520), METEOR (0.394), and SPICE (0.591).
In conclusion, this ablation study confirms the effectiveness of the correlation
module and multi-task learning in enhancing captioning performance.

5 Conclusion

We propose PathM3, a multi-modal, multi-task, multi-instance learning frame-
work for histopathology image analysis. The proposed approach addresses key
challenges in histopathology image analysis, including the intricate alignment
of WSIs with their respective diagnostic captions, and the utilization of lim-
ited textual data to enhance model performance. The novel technique delivers a
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robust feature extraction and aggregation process by utilizing the query-based
transformer and taking into account the correlation among patches within a
WSI. Our framework outlines a significant stride in computational histopathol-
ogy, advancing the integration of deep learning with expert narratives to foster
data-efficient, interpretable, and informative diagnostic outcomes.
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