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Abstract. Volumetric medical image segmentation is pivotal in enhanc-
ing disease diagnosis, treatment planning, and advancing medical re-
search. While existing volumetric foundation models for medical image
segmentation, such as SAM-Med3D and SegVol, have shown remarkable
performance on general organs and tumors, their ability to segment cer-
tain categories in clinical downstream tasks remains limited. Supervised
Finetuning (SFT) serves as an effective way to adapt such foundation
models for task-specific downstream tasks but at the cost of degrad-
ing the general knowledge previously stored in the original foundation
model.To address this, we propose SAM-Med3D-MoE, a novel frame-
work that seamlessly integrates task-specific finetuned models with the
foundational model, creating a unified model at minimal additional train-
ing expense for an extra gating network. This gating network, in con-
junction with a selection strategy, allows the unified model to achieve
comparable performance of the original models in their respective tasks
— both general and specialized — without updating any parameters of
them.Our comprehensive experiments demonstrate the efficacy of SAM-
Med3D-MoE, with an average Dice performance increase from 53.2% to
56.4% on 15 specific classes. It especially gets remarkable gains of 29.6%,
8.5%, 11.2% on the spinal cord, esophagus, and right hip, respectively.
Additionally, it achieves 48.9% Dice on the challenging SPPIN2023 Chal-
lenge, significantly surpassing the general expert’s performance of 32.3%.
We anticipate that SAM-Med3D-MoE can serve as a new framework for
adapting the foundation model to specific areas in medical image analy-
sis. Codes and datasets will be publicly available.

Keywords: Mixture of Experts · Segment Anything Model · Medical
Image Segmentation · Interactive Segmentation · SAM-Med3D-MoE.
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Fig. 1. Advantages of SAM-Med3D-MoE in general tasks and specific downstream
tasks. (a) SAM-Med3D, a foundational model for volumetric medical image segmen-
tation, demonstrates remarkable performance in segmenting general organs and tu-
mors. However, its performance is notably less effective in segmenting neuroblastoma
as observed in the SPPIN2023 challenge. (b) After finetuning SAM-Med3D on the SP-
PIN2023, it enhanced its performance on neuroblastoma segmentation but diminished
its overall segmentation capability. (c) Our method is competent for both general and
downstream tasks.

1 Introduction

Volumetric medical image segmentation is a fundamental task in 3D medical
image analysis, which plays a crucial role in diagnosing, radiotherapy planning,
treating, and further medical research [1,13,18]. Compared to the traditional
manual segmentation by specialists, deep learning-based 3D medical image seg-
mentation models [10,11,19] can achieve accurate results in several clinical sce-
narios. However, these models are designed and trained on task-specific data,
leading to a significant decline in performance when applied to new tasks or
different imaging modalities.

With the vast computational resources available and large amounts of labeled
data, the demand for universal foundation models in medical image segmenta-
tion is intensely growing [17]. Such models can be trained once and then ap-
plied to a wide range of segmentation tasks. Recently, Segment Anything Model
(SAM) [15], a promptable foundation model in natural image segmentation, has
overcome the limitations of traditional specialist models that rely on fully super-
vised learning on task-specific data and demonstrated remarkable performance
in zero-shot scenarios. Due to the great success of SAM, attempts have been
made [7,21] to build foundation models for 3D medical image segmentation, e.g.,
SAM-Med3D [21], via training across a vast collection of public datasets (over
100k volumetric masks).
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Although these foundation models have achieved noticeable performance
gains on most publicly accessible data pertinent to organs and tumors, they
are still difficult to directly apply to practical deployments. As shown in Fig. 1
(a), while SAM-Med3D [21] can perform general medical image segmentation,
it still struggles with new specific tasks (e.g., to segment neuroblastoma in MRI
data).The inherent reason stems from the lack of large-scale publicly accessible
data due to the unique challenges of privacy and strictly ethical issues in med-
ical imaging. Even though SegVol [7] and SAM-Med3D [21] have consolidated
hundreds of publicly accessible datasets, resulting in 5.7k images with 149k cor-
responding masks and another 21k images with 131k corresponding masks, these
numbers amount to merely about 0.1 % of images and 0.01 % of masks used in
training SAM. Moreover, the diversity of the existing public datasets for medical
images is limited, rendering such models difficult to address clinical downstream
tasks that fall outside the scope of the datasets. For example, each year’s MIC-
CAI Challenge introduces new segmentation demands within the field of medical
image segmentation, such as SPPIN2023 [2], which focuses on the new task of
segmenting neuroblastoma in children’s MRI scans.

Supervised Finetuning (SFT) is crucial for efficiently adapting foundation
models for task-specific downstream tasks [3,4,9]. While finetuning foundation
models with task-specific data can enhance their performance on downstream
tasks, it would inadvertently degrade the general knowledge previously stored in
foundation models [6] as shown in Fig. 1 (b). Thus, in this paper, our motivation
is to devise a method that can seamlessly integrate the original foundation model
with task-specific finetuned models into a supernet, which is proficient in both
general and specific tasks.

Recently, MoE (Mixture of Experts) [12,16,20] has become popular in assem-
bling several expert models into one powerful foundation model for LLMs [8,14].
Inspired by MoE, we propose the Segment Anything Model on 3D Medical im-
ages with Mixture of Experts (SAM-Med3D-MoE), which assembles any task-
specific finetuned model (specific expert) with the foundational model (general
expert) to a new model, at a cheap cost of training an extra lightweight gating
network as shown in Fig. 1 (c). Specifically, our approach utilizes a gating net-
work that processes both image and prompt embeddings to generate confidence
scores for each specific expert. We further introduce a novel selection strategy
that adaptively combines the outputs from the general expert and the Top-1
specific expert to yield the final mask.

In summary, the contributions of this paper can be summarized as follows.
(1) SAM-Med3D-MoE is the first to introduce MoE techniques to adaptively
merge the general knowledge from the foundational model and specific domain
knowledge from task-specific finetuned models for volumetric medical image seg-
mentation.(2) We introduce a lightweight, trainable gating network and a selec-
tor module designed to expand foundation models for downstream tasks. (3) We
evaluate the effectiveness of SAM-Med3D-MoE on the SPPIN MICCAI 2023
Challenge and 15 existing classes where the foundation model was inferior to
specific expert models. The extensive experiments demonstrate the efficacy of
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SAM-Med3D-MoE, with an average Dice performance increase from 53.2% to
56.4% on 15 specific classes, it especially gets remarkable gains of 29.6%, 8.5%,
11.2% on the spinal cord, esophagus, right hip, respectively. Additionally, it
achieves 48.9% Dice on the challenging SPPIN2023 Challenge, significantly sur-
passing the general expert’s performance of 32.3%.
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Fig. 2. Overview of our SAM-Med3D-MoE approach. The outputs of 3D Image En-
coder and Prompt Encoder undergo the dynamic selection by the gating mechanism. If
the weight of the top-1 selection after softmax exceeds τ , the most proficient finetuned
expert decoder (specific expert) is chosen, together with 3D Mask Decoder (general
expert). Conversely, if the weight does not exceed τ , only 3D Mask Decoder is utilized.

2 Method

Our model is built upon SAM-Med3D [21], which can be decoupled into three
parts: 1) 3D Image Encoder that is based on ViT (Vision Transformer) [5],
a much stronger backbone than convolutional encoders when trained on large-
scale datasets; 2) Prompt Encoder to handle both point and box prompts,
which are represented using frozen 3D absolute positional encodings and then
combined with learned embeddings specific to each prompt type; 3) 3D Mask
Decoder, a lightweight module to efficiently map the image embedding and
prompt embeddings to an output mask. In the following sections, we present the
details of our proposed SAM-Med3D-MoE.

2.1 Overview of SAM-Med3D-MoE

The unified framework is composed of a general expert alongside several task-
specific experts, the latter being finetuned on the 3D mask decoder alone. This
setup enables the use of the identical 3D image encoder and 3D prompt encoder
throughout the model. For the 3D mask decoders, we distinguish them into
two categories: the general expert (i.e., 3D Mask Decoder in Fig. 2) and the
task-specific experts (i.e., Finetune Expert Decoders in Fig. 2). Then, a gating
network is adopted to process both image and prompt embeddings to generate
confidence scores for each task-specific expert, and we further introduce a novel
selection strategy that adaptively combines the outputs from the general expert
and the Top-1 specific expert to yield the final mask.
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2.2 Gating Network

As shown in Fig. 3, the gating network is responsible for calculating the con-
fidence score for every expert model. Specifically, we take image embedding
Xi ∈ R

HWD
163

×C and prompt embedding Xp ∈ RC as input. First, the prompt
embedding goes through a self-attention and output as a query to engage in
cross-attention with Xi (as the key and value), thereby establishing a correlation
between the prompt and the image. Then, an MLP layer is adopted to update
the prompt embedding, and its result is used as the key and value to inject its
information into image embedding (as the query) with cross-attention. Notably,
residual connections and normalization layers are added after each attention and
MLP layer. Last, we send the output feature to two successive fully connected
layers and a softmax layer to obtain final scores S ∈ Rm for m experts.
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Fig. 3. Details of the gating network and the selector.

2.3 Mask Selector

Following the gating network, we assign a confident weight to each expert’s
output. To significantly prevent the model from forgetting its original segmenta-
tion capabilities, we introduce a hyper-parameter τ that acts as a switch, which
allows the model to select expert models only if the top score exceeds a predeter-
mined threshold. When the switch is activated, rather than exclusively choosing
the output of the first-ranked expert Mtop ∈ RH×W×D, we simply implement
weighted sum to fuse it with the general output Mg ∈ RH×W×D. The whole
progress can be formulated as below:

Mo =

{
(1− stop)×Mg + stop ×Mtop stop > τ

Mg stop ≤ τ

where Mo ∈ RH×W×D is the final mask and stop is the confidence score of the
first-ranked expert.

3 Experiments and Discussion

Implementation Details. The SAM-Med3D-MoE architecture underwent train-
ing within the PyTorch deep learning framework, exhibiting memory usage that
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scaled with the count of experts incorporated. Specifically, for the variant com-
prising 15 MoE experts, we employ 8 Nvidia V100 GPUs, each furnished with 32
GB of RAM. Despite the increasing memory requirements due to the multiplic-
ity of experts, it is worth mentioning that the training speed remains nearly on
par with that of the baseline SAM-Med3D model. This efficiency is attributable
to our strategic training strategy, wherein we freeze the parameters of both the
image and prompt encoders, confining updates exclusively to the parameters of
the Top-1 expert mask decoder.

Our chosen loss function, DiceCELoss, is applied on top of the final predictive
results, while CrossEntropy Loss is utilized to supervise the outputs of the gating
mechanism, thereby ascertaining the accurate selection of the appropriate expert.
We set the learning rate to 1 × 10−4 for fine-tuning the experts and 1 × 10−6

for the training of the gating network. The AdamW optimizer is employed for
the optimization of parameters. For fair comparisons, the dataset employed for
training is the same as that used for the initial baseline SAM-Med3D model.

3.1 Experiments

Extensions on Downstream Tasks. To extend the model to downstream
tasks, traditional methods typically finetune the pretrained model partially or
entirely on the new task. However, this may lead to the model “forgetting” the
knowledge acquired on the original task, a phenomenon we refer to as “catas-
trophic forgetting”. Our SAM-Med3D-MoE can effectively alleviate this problem.
Specifically, we conduct our experiments on the SPPIN MICCAI 2023 Chal-
lenge [2], which is a dataset that SAM-Med3D has never encountered during the
training process. As shown in Table 1, the task-specific finetuned expert signifi-
cantly improved the performance of the baseline model (by approximately 17%).
However, this finetuned model encountered difficulties in adapting to the origi-
nal task (as shown in the third row of the left half of Table 1, “Ori tasks” refers
to the original tasks that the Baseline SAM-Med3D had previously learned), re-
sulting in its performance being lower than the baseline. Our SAM-Med3D-MoE
address this issue by adding an expert on top of the baseline network to adapt to
the SPPIN dataset. The advantage of this approach lies in the fact that by only
training the gating network, we can achieve performance improvements on the
new SPPIN task while maintaining stable or slightly decreased performance on
the original task. This demonstrates the effectiveness of our SAM-Med3D-MoE
in mitigating catastrophic forgetting and enabling the model to adapt to new
tasks without compromising its performance on the original task.
Extensions on Weak Categories. Fig. 4 illustrates the comparative accu-
racies of the baseline SAM-Med3D, the finetuned model (denoted as the Up-
per bound), and our proposed SAM-Med3D-MoE. Panel (a) delineates 15 cat-
egories meticulously chosen based on the subpar performance of the baseline
SAM-Med3D. To enhance performance on these categories, we dedicated an
expert model to each, resulting in substantially improved accuracies, as (a)
attests.Despite these gains, a notable drawback emerges, as (b) reveals: mod-
els finetuned on isolated categories tend to overfit, losing generalizability and
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Table 1. The comparison of the Dice scores on downstream tasks and weak categories,
including the prompt as 6 points (on the left) and bbox (on the right). Our method
mitigates catastrophic forgetting and enables the model to adapt to new tasks, while
having minimal impact on the performance of the original task. The bold content is
the highest value.

Model Downstream Task (Point/Bbox) Weak Categories (Point/Bbox)
Ori tasks SPPIN Other classes finetune 15 classes

Baseline 0.433/0.527 0.338/0.323 0.424/0.541 0.399/0.532
FT-expert 0.333/0.438 0.503/0.510 0.036/0.094 0.660/0.637
Ours 0.411/0.527 0.451/0.489 0.353/0.400 0.520/0.564

thus underperforming across the broader category spectrum. In response, we
amalgamated the expert models for the 15 categories within a MoE framework.
Subsequent fine-tuning of the MoE’s gating network yielded a model whose seg-
mentation prowess notably eclipsed that of the individually finetuned counter-
parts. Crucially, as (b) corroborates, the integration into the SAM-Med3D-MoE
did not detrimentally impact performance on the baseline categories. This out-
come underscores the efficacy of the gating network in judiciously selecting the
relevant expert, circumventing the pitfalls intrinsic to conventional fine-tuning
approaches. For a comprehensive assessment, the collective average test scores
are summarized in Table 1. The phrase “finetune 15 classes” pertains to the
specifically chosen categories upon which we conducted fine-tuning. Conversely,
“Other classes” represent the residual categories within the validation dataset
that were not included in the selected 15 for fine-tuning.

3.2 Ablation Study

To ascertain the most efficacious configuration of the mask selector, we undertook
evaluations across four anatomical categories: esophagus, small bowel, stomach,
and aorta. Detailed in Table 2, our examination spanned six distinct scenarios:
the baseline SAM-Med3D, four category-specific finetuned models representing
the upper bound, and two variants employing thresholds (τ) of 0.5 and 0.7.
In these latter scenarios, we substituted the weighted sum with an arithmetic
mean (avg) and refined the weighted sum formula, transitioning from stop to a
softmax-fused output of the top expert mask decoder and the general model’s
decoder(Aftweight). For both variants, we maintained a constant τ of 0.5. Our
findings revealed that the gating mechanism’s proficiency in assimilating cues
from the input image and prompt information significantly bolsters the model’s
accuracy. This enhancement is particularly evident when the mask selector capi-
talizes on stop feature information within the weighted sum approach. Pertaining
to the threshold τ , we discerned that elevating τ diminishes accuracy, as a higher
τ may inadvertently bias the model towards the general decoder, thereby com-
promising precision.
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Fig. 4. Our model exhibits strong performance on (a) the 15 selected categories as well
as on (b) the original un-finetuned categories.

4 Conclusion

This paper introduces a plug-and-play MoE framework based on SAM-Med3D,
which seamlessly integrates task-specific finetuned models with the foundational
model, creating a unified model at minimal additional training expense for an
extra gating network. Then, a following selection strategy is adopted to enable
the unified model to achieve comparable performance of the original models in
their respective tasks without updating any parameters. Extensive experiments
on 15 specific classes and the new SPPIN task demonstrate the effectiveness of
SAM-Med3D-MoE. In future work, we will focus on two potential problems: (1)
We will verify the effectiveness of more foundation models for medical image seg-
mentation; (2) The hype-parameter τ in the mask selector should be dynamically
adapted to any scenarios.

Acknowledgments. This research was supported by Shanghai Artificial Intelligence
Laboratory.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Table 2. The comparison of the Dice scores for evaluating different configurations in
mask selector across four categories, including the prompt as 6 points (on the left)
and bbox (on the right). Upperbound refers to the result of fine-tuning each class
individually. The bold content is the highest value excluding the Upperbound.

Model Specific category (Point/Bbox) Weight mean
(Point/Bbox)Aorta Stomach Small bowel Esophagus

Baseline 0.517/0.632 0.442/0.500 0.362/0.398 0.348/0.464 0.447/0.523
Upperbound 0.792/0.755 0.717/0.687 0.545/0.533 0.593/0.566 0.687/0.660

Variations in τ

τ0.5 0.632/0.647 0.587/0.595 0.326/0.478 0.391/0.549 0.522/0.589
τ0.7 0.597/0.638 0.554/0.562 0.374/0.429 0.404/0.523 0.508/0.565

Weighted Approach
Avg 0.590/0.661 0.503/0.590 0.219/0.484 0.405/0.538 0.480/0.588

Aftweight 0.027/0.521 0.073/0.532 0.116/0.443 0.004/0.325 0.040/0.458

References

1. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman,
B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., et al.: The medical
segmentation decathlon. Nature communications 13(1), 4128 (2022)

2. Buser, M.A., van der Steeg, A.F., Simons, D.C., Wijnen, M.H., Littooij, A.S.,
ter Brugge, A.H., Vos, I.N., van der Velden, B.H.: Surgical planning in pediatric
neuroblastoma. In: International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2023. Zenodo (2023), https://doi.
org/10.5281/zenodo.7848306

3. Cheng, J., Ye, J., Deng, Z., Chen, J., Li, T., Wang, H., Su, Y., Huang, Z., Chen,
J., Jiang, L., Sun, H., He, J., Zhang, S., Zhu, M., Qiao, Y.: Sam-med2d (2023)

4. Chung, H.W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X.,
Dehghani, M., Brahma, S., et al.: Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416 (2022)

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. CoRR
abs/2010.11929 (2020), https://arxiv.org/abs/2010.11929

6. Dou, S., Zhou, E., Liu, Y., Gao, S., Zhao, J., Shen, W., Zhou, Y., Xi, Z., Wang,
X., Fan, X., Pu, S., Zhu, J., Zheng, R., Gui, T., Zhang, Q., Huang, X.: Loramoe:
Alleviate world knowledge forgetting in large language models via moe-style plugin
(2024)

7. Du, Y., Bai, F., Huang, T., Zhao, B.: Segvol: Universal and interactive volumetric
medical image segmentation (2024)

8. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity. The Journal of Machine Learning
Research 23(1), 5232–5270 (2022)

9. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

10. Huang, Z., Wang, H., Deng, Z., Ye, J., Su, Y., Sun, H., He, J., Gu, Y., Gu, L.,
Zhang, S., Qiao, Y.: Stu-net: Scalable and transferable medical image segmentation
models empowered by large-scale supervised pre-training (2023)

https://doi.org/10.5281/zenodo.7848306
https://doi.org/10.5281/zenodo.7848306
https://arxiv.org/abs/2010.11929


10 G. Wang et al.

11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203–211 (2021)

12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural computation 3(1), 79–87 (1991)

13. Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhang, L., Ma, W.,
Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for ver-
satile medical image segmentation. In: Advances in Neural Information Processing
Systems. vol. 35, pp. 36722–36732 (2022)

14. Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C.,
Chaplot, D.S., Casas, D.d.l., Hanna, E.B., Bressand, F., et al.: Mixtral of experts.
arXiv preprint arXiv:2401.04088 (2024)

15. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

16. Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer,
N., Chen, Z.: Gshard: Scaling giant models with conditional computation and
automatic sharding. arXiv preprint arXiv:2006.16668 (2020)

17. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

18. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022). https://
doi.org/10.1109/TPAMI.2021.3100536

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

20. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.:
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538 (2017)

21. Wang, H., Guo, S., Ye, J., Deng, Z., Cheng, J., Li, T., Chen, J., Su, Y., Huang,
Z., Shen, Y., Fu, B., Zhang, S., He, J., Qiao, Y.: Sam-med3d (2023)

https://doi.org/10.1109/TPAMI.2021.3100536
https://doi.org/10.1109/TPAMI.2021.3100536
https://doi.org/10.1109/TPAMI.2021.3100536
https://doi.org/10.1109/TPAMI.2021.3100536

	SAM-Med3D-MoE: Towards a Non-Forgetting Segment Anything Model via Mixture of Experts for 3D Medical Image Segmentation

