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Abstract. Achieving automated vertebrae classification in spine images
is a crucial yet challenging task due to the repetitive nature of adja-
cent vertebrae and limited fields of view (FoV). Different from previous
methods that leverage the serial information of vertebrae to optimize
classification results, we propose VertFound, a framework that harnesses
the inherent adaptability and versatility of foundation models for fine-
grained vertebrae classification. Specifically, VertFound designs a verte-
bral positioning with cross-model synergy (VPS) module that efficiently
merges semantic information from CLIP and spatial features from SAM,
leading to richer feature representations that capture vertebral spatial
relationships. Moreover, a novel Wasserstein loss is designed to minimize
disparities between image and text feature distributions by continuously
optimizing the transport distance between the two distributions, result-
ing in a more discriminative alignment capability of CLIP for vertebral
classification. Extensive evaluations on our vertebral MRI dataset show
VertFound exhibits significant improvements in both identification rate
(IDR) and identification accuracy (IRA), which underscores its efficacy
and further shows the remarkable potential of foundation models for fine-
grained recognition tasks in the medical domain. Our code is available
at https://github.com/inhaowu/VertFound.

Keywords: Foundation Models · Merging Models · Fine-grained Clas-
sification.

1 Introduction

The automated recognition of vertebrae in spinal images is crucial for a wide
range of medical applications, including the diagnosis of spinal disorders, surgical
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Fig. 1: Illustrations of the individual and combined capabilities of CLIP and
SAM for feature representation in spine images. (a) CLIP excels in semantic
understanding across the entire image. (b) SAM excels in spatial understanding
for precise localization. (c) The merged model obtains features with enhanced
local and global information.

planning, and postoperative assessment [1,2]. This process entails not only the
precise localization of individual vertebrae but also their subsequent fine-grained
classification. Among these tasks, achieving accurate classification poses a great
challenge [3], particularly due to the subtle morphological differences among
adjacent vertebrae and the constraints arising from arbitrary fields of view (FoV).

Existing methods mainly utilize the spatial relationships of vertebrae to en-
hance classification results that are aligned with the inherent sequential charac-
teristics of vertebrae. For example, Yang et al. [4] enhanced vertebrae classifica-
tion performance by proposing a message passing scheme to depict the spatial
relationship of vertebrae. Wang et al. [5] combined key point localization with
anatomically-constrained knowledge to facilitate vertebrae classification in CT
images. Cui et al. [6] introduced a bidirectional relation module to capture the
vertebral relationships among vertebrae with a self-attention mechanism. Wu et
al. [7] designed a sequence loss based on dynamic programming to better pre-
serve the sequential structure of vertebrae. However, the reliance on empirical
designs and the scarcity of datasets may limit their robustness to data variability
and transferability across different domains.

Recently, large-scale pre-trained foundation models, such as CLIP [8] and
SAM [9], have shown remarkable potential with exceptional adaptability and
flexibility in the medical domain. For example, Liu et al. [10] achieved universal
segmentation on partially labeled datasets by leveraging CLIP text embeddings
to comprehend the anatomical relationships of different organs and tumors. Lao
et al. and Qin et al. [11,12] introduced different approaches to effectively fuse the
different text prompts to enhance the abilities of GLIP [13] for zero-shot lesion
detection. Cheng et al. and Wang et al. [14,15] showed the improved performance
of SAM in medical images by introducing additional adapter layers.

However, the use of foundation models in fine-grained vertebrae classification
faces considerable challenges due to their deficiencies in effectively exploiting
vertebral spatial relationships and their limited discrimination against similar
vertebral morphologies. On the one hand, different pre-training objectives en-
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dow foundation models with different capabilities in feature representation. As
illustrated in Fig.1(a) and (b), contrastive learning-based models such as CLIP
excel at capturing high-level semantic information [16], while segmentation mod-
els such as SAM excel at capturing low-level spatial details [17]. This disparity
indicates that employing a single foundation model might not adequately cap-
ture the positional information of vertebrae. On the other hand, foundation
models struggle to handle fine-grained classification tasks [18], often lacking the
necessary discriminative capacity for the intricate vertebral textures.

To address these challenges, we propose VertFound, a framework designed
to efficiently synergize the strengths of CLIP and SAM into a unified founda-
tion model for fine-grained vertebrae classification. Firstly, feature extractors
from CLIP and SAM are employed to obtain corresponding image-level and
region-level features. The proposed vertebral positioning with cross-model syn-
ergy (VPS) module then enriches the feature representation by adopting the
dot product attention mechanisms. Specifically, VPS utilizes two different at-
tention modules (i.e., CLIP2SAM and SAM2CLIP) to facilitate effective infor-
mation integration. The CLIP2SAM attention employs image-level features as
the queries, while the region-level features serve as both keys and values, which
enables local features with global dependencies. Conversely, SAM2CLIP atten-
tion employs region-level features as queries and image-level features as keys
and values, thereby enriching semantic features with spatial context. This bidi-
rectional attention mechanism amalgamates the strengths of CLIP and SAM,
yielding enriched feature representations that encapsulate vertebral spatial re-
lationships. Subsequently, we incorporate textual information as an additional
modality input to leverage the image-text alignment capabilities of CLIP for
achieving fine-grained classification within vertebral regions. Considering the sig-
nificant similarities in feature distributions within vertebral images and textual
descriptions, we further introduce a Wasserstein loss that transfers contrastive
learning into an optimal transport problem by continually optimizing the trans-
port cost between the two distributions. This enables the model to minimize the
disparities between the image and text feature distributions and enhance the
discriminative alignment capability of CLIP for vertebral classification. Empir-
ical validation underscores the efficacy of VertFound while demonstrating the
huge potential of foundation models for fine-grained classification tasks in the
medical domain.

2 Methodology

As depicted in Fig.2, VertFound has two main stages. First, CLIP and SAM
image encoders are employed to extract image-level and region-level features.
The VPS module then combines these features to enhance vertebral position
information. In the second stage, fine-grained vertebrae classification is achieved
through image-text alignment within CLIP, with an additional Wasserstein loss
to improve alignment score discrimination by optimizing the transport distance
between image and text feature distributions.
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Fig. 2: The two-stage framework of the proposed VertFound. The first stage ob-
tains comprehensive feature representations by employing the VPS module to
effectively synergize semantic and spatial features for capturing vertebral posi-
tion information. The second stage achieves fine-grained vertebrae classification
by leveraging image-text alignment within CLIP, while a Wasserstein loss is pro-
posed to enhance the discriminative alignment capability.

2.1 Vertebral Position Enhancement

Image- and Region-Level Feature Extraction Capitalizing on the robust
generalization capabilities of foundation models, we directly employ the frozen
visual encoders of CLIP and SAM as feature extractors to obtain the corre-
sponding image features at the image-level and region-level. Specifically, we in-
put images I with a shape of H ×W into the vision transformer (ViT) model of
CLIP to yield multi-stage features Cl ∈ Rh,dc with image-level semantic informa-
tion, where l represents the l-th stage, h and dc denote the channels and feature
dimensionality, respectively. On the other hand, images combined with their as-
sociated annotated box prompts are input into the image encoder and prompt
encoders of SAM to produce relevant image and prompt embeddings. The two
embeddings are then merged to obtain region-level embeddings R ∈ Rn,ds with
spatial information, where n represents the number of bounding boxes, ds de-
notes feature dimensionality.

Vertebral Positioning with Cross-Model Synergy Module To fully lever-
age the semantic and spatial knowledge from CLIP and SAM, we propose the
Vertebral Positioning with Cross-Model Synergy (VPS) module that enhances
feature representations with more vertebral spatial details. Specifically, as shown
in Fig. 3, VPS adopts the dot product attention mechanisms [19] (i.e., SAM2CLIP
and CLIP2SAM) to achieve the interactions between global and spatial fea-
tures. First, CLIP2SAM receives image-level features Cl (e.g., {C16, C20, C24})
as queries and region-level features R as both keys and values to enrich semantic
features with nuanced spatial details:

C ′
l = softmax

(
QlK

T

√
d

)
V (1)
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Fig. 3: The paradigm of the VPS module. It employs bidirectional attention
mechanisms (i.e., CLIP2SAM and SAM2CLIP) to inherit the advantages of SAM
and CLIP and obtain vertebral position-aware features.

Ql = ClWq,K = RWk, V = RWv (2)

where Wq ∈ Rdc,d,Wk ∈ Rds,d and Wv ∈ Rds,d are learnable weights, in which
d is the dimensionality of the feature space for the queries, keys, and values.
Subsequently, a Feature Pyramid Network (FPN) [20] is employed to process C ′

l

derived from Equation 1 and obtain image-level features Ĉ ∈ Rh,dc with multi-
scale information. The refined features Ĉ are then utilized as keys and values
in the SAM2CLIP mechanism, with region-level features R serving as queries,
which greatly embeds the spatial understanding with global features. Through
the integration of SAM and CLIP, we anticipate that the resultant model will
assimilate the representation-level strengths of each, thereby enhancing its un-
derstanding of vertebral spatial relationships.

2.2 Fine-grained Vertebral Classification

Region-Text Alignment Beyond learning richer visual representations, we
also integrate textual information to harness CLIP’s capabilities in image-text
alignment for improved vertebral classification. Similar to CLIP, we compute
the alignment matrix S ∈ Rn,m between the refined region features V ∈ Rn,dc ,
generated by the VPS, and the text features T ∈ Rm,dc , extracted from a list
of m vertebral categories (e.g., S, L5, L4, . . . , C1) by using the text encoder of
CLIP. This computation is formulated as follows:

Sij =
ϕv(V )ϕt(T )

T

τ
√∑

k ϕv(Vik)2
√∑

k ϕt(Tjk)2
(3)

Here, ϕv and ϕt represent different learnable feature projections on image and
text features, while τ is a temperature parameter. Based on this, we calculate the
cross-entropy loss (CEL) to explicitly push away representations from different
image-text pairs while pulling together those that share the same semantics:
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LCEL = −
n∑

i=1

m∑
j=1

Yij logSij (4)

where Y ∈ {0, 1}n,m represents the one-hot vertebral category of the image
regions. This approach facilitates precise vertebrae classification by harnessing
CLIP’s alignment capabilities at the region level.

Wasserstein Loss However, considering the significant similarities between
different vertebrae and their corresponding textual descriptions, the image-text
alignment score S obtained in Eq. 3 might lack sufficient discrimination for
fine-grained vertebral classification. Inspired by the work [21], we propose a
Wasserstein loss (WSL) that casts contrastive learning into an optimal transport
problem. Specifically, we optimize the Wasserstein distance dλM (V, T ) to reduce
the transport cost between two distributions, which results in more discrimina-
tive alignment scores for vertebral classification. The calculation of dλM (V, T ) is
formulated as follows:

dλM (V, T ) = min
P∈U(V,T )

n∑
i=1

m∑
j=1

PijMij +
1

λ
(−

n∑
i=1

m∑
j=1

Pij logPij) (5)

where U(V, T ) = {P ∈ Rn,m
+ | P1n = V, PT1m = T} represents all possible

transport matrices; 1n and 1m denote the vectors of ones in dimension n and
m; λ is the penalty term associated with the distribution P . Mij quantifies the
difference between the ith image and the jth text and is defined as:

Mij = − exp(Sij)∑
j exp(Sij)

(6)

The Sinkhorn-Knopp algorithm [22] is used to iteratively solve for the optimal
solution. As suggested in Eq.5, a smaller dλM (V, T ) signifies greater similarity
among matched image-text pairs while a larger distance indicates a weaker cor-
relation. Therefore, we directly adopt the Wasserstein distance dλM (V, T ) as the
WSL to achieve the fine-grained alignment between image and text:

LWSL = dλM (V, T ) (7)

2.3 Model Optimization

Finally, VertFound employs a dual-loss optimization strategy to enhance the
overall vertebrae classification accuracy:

Ltotal = LCEL + LWSL (8)
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3 Experiment Results

3.1 Datasets and Evaluation Metrics

We evaluate the proposed VertFound on an in-house dataset that contains 1233
2D MRI images from 266 patients with a variety of vertebral appearances and
FOVs, and a five-fold cross-validation approach is used for a thorough evalu-
ation. Furthermore, we use identification rate (IDR) and image identification
accuracy (IRA) as evaluation metrics. IDR calculates the ratio of vertebrae that
are successfully detected, whereas IRA calculates the ratio of images that have
all of their vertebrae correctly identified.

3.2 Implementation Details

All input images are resized to 224× 224 and 1024× 1024 and sent to CLIP and
SAM image encoders via frozen ViT-L/14 and ViT-B/16, respectively. During
training, the annotated bounding boxes are input to SAM, while in the testing
phase the bounding boxes are predicted by a pre-trained detector (YOLOv8).
The frozen text encoder of CLIP is employed to extract text features from a
total of 25 category names of vertebrae (e.g., S, L5, L4, ... C1). The AdamW
optimizer is employed with an initial learning rate of 2.5 × 10−5, following a
warm-up multi-step schedule with weight decay of 0.0001, Adam momentum of
0.9, and batch size of 40. Our methods are implemented in Python using the
PyTorch framework and trained on an NVIDIA GTX 1080 Ti GPU. The CEL
and WSL are all used for classification optimization, and the loss weights are all
empirically set to 1.

(a) wo. CLIP (b) wo. SAM2CLIP (c) wo. CLIP2SAM (d) wo. WSL (e) Full model

Fig. 4: Confusion stars show the classification errors of different ablation studies.
Specifically, the circle is divided into 25 regions, each representing a distinct
class. Within each region, there are 24 subsections corresponding to the other
classes, indicating the number of classification errors for each particular class.

3.3 Results

Comparison with Competing Methods As shown in Table 1, in-depth com-
parisons with current methods are carried out to evaluate the effectiveness of
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Table 1: Comparison with Competing
Methods.

Methods IDR(%) IRA(%)

DETR [23] 75.58 ± 5.39 46.60 ± 4.26
YOLOv5 [24] 76.46 ± 2.29 54.30 ± 3.27
YOLOv8 [25] 77.21 ± 1.49 55.43 ± 2.46
GLIPv1 [13] 74.31 ± 2.63 47.87 ± 2.19

OWL-ViT [26] 76.68 ± 3.15 54.81 ± 3.56
Ours (VertFound) 89.05 ± 5.82 83.73 ± 4.46

Table 2: Ablation study Results.

Methods IDR(%) IRA(%)

wo.CLIP 76.31 ± 7.08 64.86 ± 3.62
wo. CLIP2SAM 84.15 ± 2.46 80.18 ± 3.69
wo. SAM2CLIP 61.64 ± 2.12 65.26 ± 4.89

wo. WSL 82.50 ± 4.51 75.97 ± 4.38
Ours (VertFound) 89.05 ± 5.82 83.73 ± 4.46

VertFound. All experiments adopt identical experimental settings to ensure fair-
ness and reliability in the comparative evaluation. Our baselines include classical
object detection algorithms (i.e., DETR [23], YOLOv5 [24], and YOLOv8 [25])
and recent foundation models (i.e., GLIPv1 [13] and OWL-ViT [26]). VertFound
demonstrates superior performance in both IDR and IRA, which underscores its
improved capability for fine-grained vertebrae classification.
Ablation Studies We conducted thorough ablation studies to verify the effi-
cacy of the crucial components in VertFound. As presented in Table 2, removing
CLIP (relying solely on SAM for classification) results in a noticeable decrease
in classification performance. Meanwhile, removing either the CLIP2SAM or
SAM2CLIP component in the VPS module also shows a noticeable decrease in
both IDR and IRA, which highlights the significance of the aggregation between
global and local features for precise vertebral positioning. Besides, the confusion
star [27] in Fig.4 vividly illustrates the classification errors arising from different
ablation methods. Furthermore, the removal of WSL also leads to a decline in
overall performance. Figure 5 further elucidates that the incorporation of WSL
optimizes the image-text alignment scores with varying degrees, thereby enhanc-
ing the discrimination against fine-grained vertebral features.

4 Conclusion

In this paper, we propose VertFound, which combines semantic and spatial un-
derstanding to achieve fine-grained classification of vertebrae. We introduce a
novel VPS module that leverages the complementary strengths of CLIP and
SAM for enriching vertebral feature representations. A WSL is introduced to
enhance the discriminative alignment capability of CLIP for fine-grained verte-
brae classification. Empirical validation shows the efficacy of VertFound while
demonstrating the remarkable potential of foundation models for fine-grained
recognition tasks. In the future, we will extend our experiments to include ad-
ditional datasets from different sources and modalities to test the generalization
capabilities of our method, including 3D MRI and CT scans.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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Fig. 5: Different examples show the effectiveness of WSL in improving the dis-
criminative capability of image-text alignment.
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