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Abstract. The segmentation of cardiovascular arteries in 3D medical
images holds significant promise for assessing vascular health. Despite the
progress in current methodologies, there remain significant challenges, es-
pecially in the precise segmentation of smaller vascular structures and
those affected by arterial plaque, which often present as disconnected in
images. Addressing these issues, we introduce an innovative refinement
method that utilizes a data-driven strategy to correct the appearance of
disconnected arterial structures. Initially, we create a synthetic dataset
designed to mimic the appearance of disconnected cardiovascular struc-
tures. Our method then re-frames the segmentation issue as a task of
detecting disconnected points, employing a neural network trained to
identify points that can link the disconnected components. We further
integrate an open curve active contour model, which facilitates the seam-
less connection of these points while ensuring smoothness. The effective-
ness and clinical relevance of our methodology are validated through an
application on an actual dataset from a medical institution.

Keywords: Cardiovascular Artery · Segmentation · Disconnected Re-
pairment · Open Curve Snake.

1 Introduction

Cardiovascular diseases rank the highest among the primary causes of mortal-
ity and morbidity globally, notably attributable to conditions such as coronary
artery disease and stroke [13,6]. Medical imaging techniques, including computed
tomography angiography (CTA), enable the visualization of vascular structures.
Leveraging 3D vascular structure reconstruction, both topological and morpho-
metric insights can be quantified, facilitating clinical diagnosis and assessment
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of vascular health. Such assessments encompass identifying stenosis, plaque for-
mation, occlusions, and more [1,2,11].

A pivotal and intricate phase in vascular structure reconstruction involves
precise and automated vessel segmentation. This process entails converting orig-
inal cardiovascular images into vascular trees with detailed representations of
branches, including centerlines and radii. Broadly, two primary methodologies
exist for automated vascular tracing. 1) Segmentation-based method: These
techniques segment voxels belonging to the vasculature, followed by vessel skele-
tonization to identify centerlines iteratively. Subsequently, radii along the cen-
terlines are estimated. In recent years, deep learning approaches, particularly
convolutional neural networks (CNNs), have gained prominence in numerous
studies for learning robust and discriminative features for automatic vascular
segmentation [15,3,9,7,19]. However, current methods such as UNet still en-
counter challenges in achieving adequate precision, largely due to the small scale
and dispersed spatial distribution of cardiovascular structures. Additionally, en-
suring the smoothness and continuity of vessels after skeletonization remains
uncertain. 2) Tracking-based methods: These approaches involve the direct
identification of initial seeds and radii from seed points, followed by iterative
stretching of both ends of the trace during tracking [23,22,17,10]. Crucial to this
method is predicting the correct direction for stretching, which can be guided
by either a human-designed vessel enhancement filter or a neural network as uti-
lized in CNN Tracker. However, the tracking-based approach is sensitive to the
placement of initial seeds. Improper seed selection may lead to tracing leakage
into the background or result in an incomplete vascular tree [25].

In our study, we introduce a hybrid refinement methodology that combines
segmentation and tracking approaches to achieve robust vessel tracking, lever-
aging deep learning techniques to enhance cardiovascular artery segmentation
through repairing disconnected components and open curve snake methods [18,4].
The primary aim is to rectify disconnected cardiovascular components by accu-
rately identifying the centers of the disconnected parts. The refinement of seg-
mentation by addressing disconnected components has been extensively studied
in previous research. For instance, Zhao et al. [27] introduced the Ball B-Spline
Curve method for modeling freely shaped tubular objects. Meanwhile, DeepVes-
selNet [16] specializes in direct vessel segmentation while also focusing on topol-
ogy and bifurcation detection to minimize disconnected points. However, both
approaches require prior knowledge of the locations of disconnected points, which
is often unattainable in real clinical settings. Another study, Weng et al. [20,21],
proposed a post-processing technique that employs a data-driven approach to
mend the topology of disconnected pulmonary tubular structures, training a
neural network to predict key points that could connect disjointed components.
Yet, its direct tubular connection strategy is unsuitable for cardiovascular arter-
ies. To overcome these challenges in CTA segmentation, we embrace a similar
data synthesis and key point detection idea from Weng et al. [20] and advance
them by creating a training data synthesis and disconnected connection pipeline
in CTA. This pipeline produces disconnected data from complete cardiovascular
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trees and improves cardiovascular artery segmentation by repairing disconnected
components and utilizing open-curve snake methods.

The key contributions of our work are: 1) Introducing Car-Dcros, a novel
pipeline designed to re-frame CTA segmentation by incorporating disconnected
component repairment and connection smoothness optimization (open-curve snake)
in CTA segmentation. 2) Providing open-source synthetic cardiovascular discon-
nected datasets specifically tailored for disconnected points detection. 3) Demon-
strating state-of-the-art performance on vessel segmentation through bench-
marking against three cardiovascular CTA datasets.

2 Methods

In this section, we present a comprehensive description of our approach for de-
tecting disconnected vessel components as a disconnected points detection task.
We begin by re-framing the problem and proceed with an explanation of the data
synthesis pipeline to create the training dataset. Subsequently, we introduce the
revised 3D UNet for objection detection tasks by describing its architecture
and implementation details. Finally, we provide a concise overview of the 3D
open-curve snake techniques utilized for connecting disconnected points while
optimizing for smoothness and density fitness.

2.1 Problem Re-framing

Accurate segmentation of the cardiovascular tree is essential for diagnosing
cardiac-related diseases, yet the complexity of cardiac vessel trees, especially
with plaque, poses challenges for CNNs to capture fine-grained patterns, of-
ten resulting in unsatisfactory predictions and disconnections within vessel tree
structures. In this study, we re-frame cardiovascular segmentation as a discon-
nected points detection and repairment task. Our approach utilizes a neural net-
work to achieve disconnected points detection, a technique commonly applied in
computer vision [8,28]. We utilize heatmap regression to create ground-truth
heatmaps for each disconnected point. By adopting this, our method produces
multi-channel heatmaps, where each channel represents a distinct disconnected
point. This technique is particularly effective for identifying the two endpoints
of disconnected vessels.

2.2 Data Synthesis Pipline

Due to the absence of public medical datasets for cardiovascular disconnected
point detection, we created synthetic data from CTA scans using meticulously
annotated vessel masks. This process involved binary mask extraction from 40
the Automated Segmentation of Coronary Arteries (ASOCA) dataset scans [9],
200 the Image Coronary Artery Segmentation (ImageCAS) dataset scans [24],
and 10 scans from our dataset (JHH). Our pipeline, illustrated in Fig. 1 (a),
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Fig. 1. The pipeline of our framework. (a) In the dataset synthetics, using ITK and
Vessel-tree Reconstruction [26], we identified vessel centerlines and generated tree-like
graphs. A branch was randomly chosen, and two points along the centerline were sam-
pled and processed to simulate vascular disconnections, labeled as P1 and P2. (b) In
training, two networks were trained, including the nn-UNet and the disconnected point
detection network. (c) In testing, open curve snake model wass utilized for connecting
the disconnected points.

includes centerline extraction, graph construction, random sampling, and recon-
struction of disconnected points (P1 and P2). To mirror real-world conditions,
where discontinuities often occur in thinner vessels, our sampling favored smaller
branches by the hierarchy of vessel nodes, leading to discontinuities primarily in
smaller vessels.

2.3 Disconnected Point Detection Network

The training pipeline, presented in Fig. 1 (b), encompasses data pre-processing,
network architecture, and implementation specifics, all of which are detailed in
the following sections.

Data Pre-processing To limit the computing memory, we cropped a sub-
volume with the size of 40×40×40 around P2 where the disconnect occurs and
also crop out the disconnected component from the original volume. Specifically,
since the location of the small disconnected components P2 can be found using
morphological processes, we randomly selected a point in that small object as
the center point of our sub-volume. To keep the same size of the input volume,
zero padding was applied to recover the size to 128×128×128.
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Details of Network Our network for detecting disconnected points modifies
the 3D UNet architecture [5], as shown in Fig. 2. It processes two distinct in-
puts: the first comprising P2 and its associated disconnected component, and
the second encompassing P1 and the entire volume. Correspondingly, the net-
work outputs heatmaps for P1 and P2. Each input to the network is a binarized
subvolume with D, H, and W denoting the spatial dimensions of the cropped
volume, 128 in this paper. To preserve coordinate accuracy, we opted to main-
tain the output heatmaps at the same resolution as the inputs, thereby avoiding
downsampling.

Fig. 2. Detection network for disconnected points: The 3D UNet, receiving two chan-
nels representing disconnected components of an artery vessel, processes these inputs
and outputs two heatmaps corresponding to points P1 and P2.

Implementation Details Our approach involves leveraging an advanced frame-
work for detecting disconnected points, framing the issue as a task of heatmap
estimation. The most confident coordinate in each heatmap of H is indicative of
the Pth disconnected point’s position. To create the ground-truth heatmaps, we
positioned a 3D Gaussian kernel at the center of each actual disconnected point
location. The disconnected point Mean-Squared Error loss is:

L =
1

P

P∑
p=1

|Hp − Ĥp|2, (1)

With Hp, Ĥp as the actual and predicted heatmaps for each disconnected
point, and P set to 2.

2.4 Model inference with open-curve active contour method

In our model, we connected two identified disconnected points using the open-
curve active contour method. Originally developed for 2D image contouring [12],
this method refines initial contours iteratively by minimizing an energy func-
tion combining external image fitting intensity and internal contour smoothness.
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Wang et al. [18] adapted it for 3D neural fibers as an open curve snake, focusing
on open curves. The open-curve active contour model used in this paper is a
combination of the internal energy Eint and the external energy of Eext:

Etotal =

∫ 1

0

(Eint(c(s)) + Eext(c(s))) ds, (2)

Eint(c(s)) = α(s)|cs(s)2|+ β(s)|css(s)2|, (3)

Eext(c(s)) = −I(x(s), y(s), z(s)) + Estr(c(s)). (4)

However, real scenarios often have unknown locations for disconnected points
(P1 or P2), and there may be noises scattered throughout the volume’s entire
original size. We used an algorithm that bridges training with real-world ap-
plication, improving the prediction of disconnections, as detailed in the Suppl.
To reduce the impact of noise scatter, we implemented a noise filter and con-
centrated on reconnecting the relatively large disconnected components, guided
by clinical considerations. Given the minimal clinical impact of small discon-
nected components on cardiac flow dynamics and plaque detection—due to low
signal-to-noise ratios—these small components were excluded from analysis.

3 Experiments

3.1 Datasets

The detailed descriptions of datasets are shown in the Supplementary Material.
Two datasets with annotation of arteries are utilized to construct our train-
ing dataset. One is the ASOCA dataset which consists of 40 CTA scans and
the other one is the ImageCAS dataset with 200 CTA scans. Both datasets are
divided into training, validation, and test subsets. The cardiovascular discon-
nected points synthetic dataset includes 3D models represented by binarized
ground-truth segmentation masks, centerlines, disconnected volumes, and a cor-
responding graphic file for each subject. The graphic file contains information,
such as the coordinates, endpoints, and all points along each branch. We also
constructed a real-life clinical dataset from the Johns Hopkins Hospital (JHH),
consisting of 10 subjects, which is only used for test purposes. The CTA scans
from JHH dataset were manually annotated by a senior radiologist.

3.2 Evaluation Metrics

In our experiments, we evaluated the model using the Dice Similarity Coeffi-
cient (DSC) and Hausdorff Distance (HD). Both are shown below:

DSC =
2|S

⋂
T |

|S|+ |T |
HD(S, T ) = max

{
max
t∈T

min
s∈S

d(s, t),max
s∈S

min
t∈T

d(s, t)

}
(5)
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where S and T are the binary labels for both prediction and ground truth,
respectively. The DSC values are in the range [0, 1], where 1 indicates perfect
overlap between S and T and 0 indicates no overlap. HD measures the proximity
between two sets (or segmentations in our instance), with the smaller number
indicating better agreement. As is customary we report the 95% HD.

Object Keypoint Similarity (OKS) has been used as the evaluation metric in
Weng et al. [20]. In this paper, we adapted OKS to align with the features of
our dataset. Our modifications to the OKS are shown below:

KSn = −exp(−d2n/2s
2k2), OKSp =

∑
n KSn · δ(vn > 0)∑

n δ(vn > 0)
(6)

dn is the Euclidean distance between actual and predicted disconnected
points, with k as the point-specific constant and s the scale of the true ob-
ject. OKSp measures the KeyPoint Similarity (KS) for sample n, and Vn is the
visibility flag. OKSp denotes the OKS for each pth point (p=2 in this study),
ranging from 0 (no match) to 1 (perfect match).

Dd =
1

P

P∑
p=1

|p− p̂| (7)

Here Dd is the Euclidean distance between the predicted disconnected point
and the ground-truth disconnected point.

4 Results

To analyze the performance of our methods on topology repairing of the discon-
nected cardiovascular vessels, we used several methods on the proposed dataset,
as shown in Table 1 and Table 2.

Table 1. Dice and 95% HD performance on the ASCOS, ImageCAS and JHH dataset

Dataset Method Dice 95% HD

ASCOS

nn-UNet (2D) 0.761 ± 0.023 9.32 ± 1.240
nn-UNet (3D) 0.793 ± 0.031 6.84 ± 1.290
nn-UNet with clDice 0.801 ± 0.029 2.79 ± 0.945
nn-UNet with Car-Dcros 0.845 ± 0.019 1.22 ± 0.321

ImageCAS

nn-UNet (2D) 0.795 ± 0.029 8.62 ± 1.310
nn-UNet (3D) 0.821 ± 0.022 6.38 ± 1.200
nn-UNet with clDice 0.828 ± 0.029 2.48 ± 0.679
nn-UNet with Car-Dcros 0.862 ± 0.015 1.08 ± 0.239

JHH

nn-UNet (2D) 0.720 ± 0.038 9.89 ± 1.150
nn-UNet (3D) 0.762 ± 0.029 7.23 ± 1.420
nn-UNet with clDice 0.779 ± 0.039 3.41 ± 0.813
nn-UNet with Car-Dcros 0.821 ± 0.025 1.38 ± 0.402
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Fig. 3. A qualitative comparison of segmentation results showcases the performance
of our proposed models (nn-UNet 3D with Car-Dcros) against various state-of-the-art
techniques. Arrows in the results point out the capability of Car-Dcros in correcting
disconnections initially identified by the nn-UNet 3D.

Our Car-Dcros model was compared with SOTA methods (2D UNet, 3D
UNet, 3D UNet with clDice [14]) across different datasets, as depicted in Fig. 3.
We summarized quantitative performance using DSC and 95% Hausdorff Dis-
tance metrics in Table 1. UNet with Car-Dcros outperformed others, achieving
higher mean DSC and lower mean 95% HD scores, with statistical significance
confirmed by a Wilcoxon signed-rank test.

Table 2 presents the performance of disconnected point detection on the AS-
COS and ImageCAS datasets. For a detailed assessment, we calculated precision
metrics, including overall OKS (mean OKS), OKSP1 and OKSP2 (OKS for P1
and P2), and mean Dd along with DP1

d and DP2
d for both points. We trained the

UNet1, UNet2, and UNet3 networks using synthetic datasets with varying sam-
pled disconnected intervals. Results show that the dual-channel 3D-UNet model
is more effective in detecting disconnected points in short, rather than long,
vessel intervals. The data also reveals lower average precision for P1 compared
to P2. This suggests that detecting P1 is more challenging, likely due to ran-
dom cropping in data sampling impacting performance, as indicated by poorer
Dd and OKS metrics. Additionally, the rarity of disconnected points in smaller
cardiovascular arteries makes detecting finer details more difficult.
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Table 2. Performance of Disconnected Point Detection. UNet1: Input for short dis-
connections interval (pixel range: 0-5], UNet2: Medium disconnections interval (pixel
range: 0-10], UNet3: Large disconnections interval (pixel range: 0-15].

Dataset Method OKS OKSP1 OKSP2 Dd DP1
d DP2

d

ASCOS

UNet1 0.769 0.765 0.878 2.83 3.31 2.37

UNet2 0.740 0.700 0.838 6.33 7.32 6.10

UNet3 0.692 0.696 0.794 11.61 13.04 9.14

ImageCAS

UNet1 0.859 0.829 0.912 2.51 3.03 2.03

UNet2 0.823 0.814 0.875 4.22 6.86 4.00

UNet3 0.821 0.804 0.860 10.31 11.94 8.71

5 Conclusion

This research introduces a data-driven refinement technique to overcome the
issue of disconnected cardiovascular artery structures, which is vital for accu-
rate diagnosis and effective treatment of cardiovascular diseases. We have de-
veloped a method that utilizes a carefully compiled dataset comprising 250 de-
tailed 3D cardiovascular artery structures, in addition to synthetically created
disconnected data. Our method involves a neural network specifically tailored to
identify points of disconnection. This network is trained with a specialized data
synthesis pipeline, which is capable of generating disconnected data from intact
cardiovascular artery structures. The outcomes of this method are encouraging,
demonstrating a strong potential for application in clinical settings.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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