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Abstract. The human cerebral cortex is highly convoluted into convex
gyri and concave sulci. It has been demonstrated that gyri and sulci are
significantly different in their anatomy, connectivity, and function: besides
exhibiting opposite shape patterns, long-distance axonal fibers connected
to gyri are much denser than those connected to sulci, and neural signals
on gyri are more complex in low-frequency while sulci are more complex
in high-frequency. Although accumulating evidence shows significant
differences between gyri and sulci, their primary roles in brain function
have not been elucidated yet. To solve this fundamental problem, we design
a novel Twin-Transformer framework to unveil the unique functional roles
of gyri and sulci and their relationship in the whole brain function.
Our Twin-Transformer framework adopts two structure-identical (twin)
Transformers to disentangle spatial-temporal patterns of functional brain
networks: one focuses on the spatial patterns and the other is on temporal
patterns. The spatial transformer takes the spatially divided patches
and generates spatial patterns, while the temporal transformer takes the
temporally split patches and produces temporal patterns. We validated
our Twin-Transformer on the HCP task-fMRI dataset, to elucidate the
different roles of gyri and sulci in brain function. Our results suggest that
gyri and sulci could work together in a core-periphery network manner,
that is, gyri could serve as core networks for information gathering and
distributing, while sulci could serve as periphery networks for specific
local information processing. These findings have shed new light on our
understanding of the brain’s basic structural and functional mechanisms.

Keywords: Gyri and Sulci · Core-Periphery · Twin-Transformer.

1 Introduction

Gyri and sulci are the standard morphological and anatomical nomenclature of
the cerebral cortex (Figure 1) and are usually defined in anatomical domains [1].
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Fig. 1. Core-periphery organized brain networks in gyri and sulci. The fMRI signals
extracted from voxels are fed into the Twin-Transformer model. The disentangled brain
networks are organized in a core-periphery manner, where gyri serve as the core network,
and sulci serve as the periphery network.

Gyri and sulci serve as the basic building blocks to make up complex cortical
folding patterns and are fundamental to realizing the brain’s basic structural and
functional mechanisms. Numerous efforts have been devoted to understanding the
function-anatomy patterns of gyri and sulci from various perspectives, including
genetics [2], cell biology [3], and neuroimaging [4, 30]. It has been demonstrated
consistently that gyri and sulci are significantly different in their anatomy, connec-
tivity, and function. Several studies [6, 19] found that the formation of gyri/sulci
may be closely related to the micro-structure of white matter. For example,
diffusion tensor imaging (DTI) derived long-distance axonal fibers connected
to gyri are significantly denser than those connected to sulci [11]. That is, the
long-distance fiber terminations dominantly concentrate on gyri rather than sulci,
and interestingly, this phenomenon is evolutionarily preserved across different
primate species. Meanwhile, using functional magnetic resonance imaging (fMRI),
a few functional measurements that can directly reflect brain functional activi-
ties on gyri and sulci have been explored, such as functional BOLD signals [4],
correlation-based connectivity/interaction [5,10,20], and spatial distribution of
functional networks [7, 16]. Despite accumulating functional differences found be-
tween gyri and sulci, their basic roles as well as their relationship and interaction
in the whole brain function have not been explored or elucidated yet.

To answer this fundamental question in brain science, we proposed a novel
Twin-Transformer framework to explore and unveil the unique functional roles
of gyri and sulci. Unlike traditional factorization-based approaches that assume
linearity and independence, the transformer with self-attention mechanism [14] is
an ideal backbone to characterize, represent and reveal the complex and deeply
buried patterns in the observed brain functional data. The whole framework is
illustrated in Figure 2. Our Twin-Transformer framework adopts two structure-
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identical (twin) Transformers to model and disentangle spatial-temporal patterns
of gyri and sulci: one focuses on the spatial patterns and the other focuses on tem-
poral patterns. To model the complex 4D (spatial-temporal) fMRI signals, within
the framework, we designed a spatial transformer and a temporal transformer to
disentangle and extract the patterns in both spatial and temporal domains from
the original fMRI signals. After the model is well-trained, the spatial-temporal
functional brain networks (FBNs) [15] specific to gyri and sulci can be recovered
through gyri and sulci masks. We validated our Twin-Transformer on one of the
largest brain imaging datasets (HCP task-fMRI gray-ordinate dataset), for the
first time, to elucidate the different roles of gyri and sulci in brain function. Our
results suggest that gyri and sulci could work together in a core-periphery network
manner, that is, gyri could serve as core networks for information gathering and
distributing in a global manner, while sulci could serve as periphery networks for
specific local information processing. These findings have shed new light on our
fundamental understanding of the brain’s structural and functional mechanisms,
provide further inspiration for brain-inspired neural network design [12,13], and
aid in the research of brain diseases [21–29]. The contributions of this paper are
summarized as follows:

– We proposed a novel Twin-Transformer framework to disentangle the spatial-
temporal patterns of the functional brain networks from fMRI datasets.

– We used the proposed method to represent and unveil the fundamental
functional roles of the two basic cortical folding patterns: gyri and sulci.

– We found that gyri and sulci may work together in a Core-Periphery network
manner: gyri serve as core networks for information gathering and distributing,
while the sulci serve as periphery networks for specific local information
processing.

2 Methods

2.1 Data Preparation

We use the task fMRI (tfMRI) from the Human Connectome Project (HCP)
dataset [17]. The publicly available preprocessed tfMRI data went through the
minimal preprocessing pipelines specially designed for the HCP dataset [4]. The
preprocessed tfMRI are 4D imaging data, which consists of a time series of 3D
images of the brain. For emotion, gambling, language, motor, relational, social,
and working memory (WM) task-fMRI, each voxel contains a series of brain
signals of time length 176, 254, 316, 284, 232, 274, and 405. We rearrange the
signals in each voxel into a 2D matrix. In this way, a 4D tfMRI imaging can be
represented by a 2D matrix, where each row stores brain signals at each time
step, and each column stores brain signals in a specific voxel (Figure 2-a,b). We
normalized the brain signals to zero mean and unit variance [18]. Since each
subject of the preprocessed data has 59,412 voxels in standard gray ordinate
space, the column dimension of the 2D matrix is 59,412. To facilitate patch
partition, we expand the space dimension according to our needs by adding
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Fig. 2. Illustration of the proposed Twin-Transformer framework. Part (a) extracts the
signals and rearranges them into a signal matrix. Part (b) shows the patch division of
the signal matrix. Part (c) is the position encoding for the spatial and temporal patches.
Part (d) is the Twin-Transformer, which includes spatial and temporal transformers
for processing spatial and temporal patches. Part (e) is the reconstruction of the
signal matrix from disentangled spatial and temporal patterns. The spatial/temporal
transformers under the black dot line show the details of the Twin-Transformer.

zero vectors along the spatial dimension. For example, to disentangle the signal
matrices into 50 spatial-temporal brain networks, the space dimension is extended
from 59,412 to 59450 to divide the space dimension into 50 patches.

2.2 Twin-Transformer

The architecture of the Twin-Transformer is illustrated in Figure 2. There is a
spatial and temporal transformer for disentangling spatial and temporal patterns
of the brain networks, as shown in Figure 2-d. The structure of the spatial trans-
former is identical to the temporal transformer, except they take spatial/temporal
divided patches as input. For each input signal matrix, spatial patches are gener-
ated by shifting the spatial window along the space dimension, as illustrated by
the orange arrow in Figure 2-b, while temporal patches are generated by shifting
the temporal window along the time dimension, as shown in the green arrow.

Specifically, within the spatial transformer, the self-attention operation across
the spatial patches aims to learn the latent representations of spatial features
and takes non-overlapping spatial patches as tokens to build attention across
the spatial variant patches and generate spatial patterns. It divides the input
signal matrix into P non-overlapping patches by shifting the sliding window
(orange dotted box following orange arrow) from left to right along the space
dimension. The size of the sliding window can be adjusted according to the
size of the input data. Each spatial patch contains partial spatial but complete
temporal information on the focal brain region. The P patches correspond to P
patterns of brain networks. Patches are used as tokens, and each token is first
fed into a linear projection layer to obtain the latent representation zi ∈ ℜ1×D1
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and then the learnable spatial positional embedding, Es
i ∈ ℜ1×D1 is added to

the representations of each input token. The spatial transformer encoder can be
formulated as:

Spa(Z) = MLP (MSA(LN(zs1||zs2||zs3||...||zsP ))) (1)

where MSA() is the multi-head self-attention, MLP() represents multilayer per-
ceptron, and LN() is layernorm. zsi = (zi +Es

i ), i = 1, 2, ..., P and || denotes the
stack operation. Spa(Z) ∈ P ×N is the output of the spatial Transformer, where
P represents the number of brain networks, and N is the number of voxels in the
brain. Spa(Z) models the activated status of voxels within each brain network.

The temporal transformer is designed to learn the latent representations
of temporal patterns of brain networks. Similar to the spatial transformer, by
shifting the sliding window (green dotted box following green arrow) from top
to bottom along the time dimension, T non-overlapping temporal patches are
generated. Each temporal patch contains partial temporal but complete spatial
information of all the voxels. Correspondingly, the temporal transformer builds
attention across the temporal variant patches and generates temporal features.
The sliding window slides each unit of time, so the number of patches equals the
length of the signals. After patch embedding and positional embedding, each
patch is represented by zti = (zi +Et

i ), i = 1, 2, ..., T . The temporal self-attention
module can be formulated as:

Tem(Z) = MLP (MSA(LN(zt1||zt2||zt3||...||ztT ))) (2)

The outputs Tem(Z) of the temporal self-attention module have a dimension
of Tem(Z) ∈ T × P , where T represents the time length of the fMRI signals.
Tem(Z) represents the temporal patterns of the brain networks. Taking Spa(Z)
and Tem(Z) together, we can obtain both the spatial and temporal patterns of
the brain networks of each subject.

2.3 Loss Function

There are two terms in the loss function. The first one is the signal matrix
reconstruction loss. The whole framework is trained in a self-supervised manner,
therefore, the input signal matrix can be reconstructed from the learned spatial
and temporal patterns. This is crucial to ensure the learned spatial and temporal
features can capture the complete spatial and temporal information of the input
data. The reconstruction loss is formulated as:

Lreco =
∑

∥X − Tem(Z) · Spa(Z)∥L1 (3)

where X is the input signal matrix, and we use the L1-norm to constrain the
reconstruction term. In order to make spatial patterns distinct and limit the
scale of temporal patterns from being arbitrarily large, we add a normalization
on temporal patterns, which is formulated as:

Ltem_norm = max(0,
1

P
(

P∑
i=1

∥Tem(Zi[∗, i])∥2)− 1) (4)
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Fig. 3. Relationship matrix of gyri and sulci. Each row represents a subject. Each
column represents a task. For each subject, the number of voxels in gyri and sulci are
marked in red and blue. The connections between gyri-gyri, gyri-sulci, and sulci-sulci
are shown in red, pink, and blue, respectively. These relationship matrices are generated
under threshold 0.8.

Combining the two parts, the overall loss can be formulated as:

L = Lreco + αLtem_norm (5)

where the regularization parameter α controls the influence of temporal normal-
ization on the overall loss function.

3 Results

Using the gray-ordinate fMRI signals of each subject, as input for the Twin-
Transformer, the output of the well-train model includes spatial-temporal patterns,
where spatial patterns can be interpreted as FBNs, and the corresponding
temporal patterns can be treated as the representative signals of each FBN.
Though signals on gyri and sulci are different, we set the same threshold. The
activated voxels of gyri and sulci in each FBN can be obtained by applying
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Table 1. The normalized independent probability of gyri and sulci brain networks
under 100 patterns set, and the threshold is 0.8. The format is Mean(Variance).

IP Emotion Motor Gambling Relational WM Social Language
PGG 0.51(0.03) 0.54(0.03) 0.44(0.05) 0.44(0.03) 0.48(0.03) 0.46(0.03) 0.53(0.03)
PGS 0.30(0.01) 0.30(0.01) 0.32(0.01) 0.32(0.01) 0.31(0.01) 0.32(0.01) 0.30(0.01)
PSS 0.18(0.02) 0.17(0.02) 0.24(0.04) 0.24(0.03) 0.22(0.02) 0.22(0.02) 0.24(0.04)

the gyri and sulci mask to the FBN (Figure 1). We present the core-periphery
organization of gyri and sulci, validation, and ablation study in the following
subsections.

3.1 Core-Periphery Organization of Gyri and Sulci

We can identify the activated brain voxels in gyri and sulci whose weights
are consistently above a pre-defined threshold across all spatial patterns. By
connecting all the activated voxels, we can construct a relationship matrix of gyri
and sulci and obtain their mapping on the brain surface. We randomly select 5
subjects and present their relationship matrix in Figure 3. Since the number of
voxels in gyri and sulci of different subjects are various, the size of the relationship
matrices is various. In general, the relation matrix is sparse, which means only a
few regions (voxels) are involved in a specific task at the same time. As shown
in Figure 3, the activated brain voxels in the gyri-gyri section incline to form
larger and connected blocks or clusters, while the activated brain voxels in the
sulci-sulci section tend to assemble as smaller and scattered patterns. Besides,
compared to relational, other tasks, such as WM, social, language, and emotion
involve larger sulcal regions that host more high-level functions.

To examine and prove the concept of the Core-Periphery organization of gyri
and sulci, we compute the normalized independent probability (IP) PGG, PSS

and PGS for sub-matrices AGG, ASS , and AGS of the relationship matrix, which
represents the interactions within gyri vertices (Core Network), sulci vertices
(Periphery Network), and between gyri and sulci vertices (between Core and
Periphery Networks). Independent probability [8] is defined as the probability
that there is an edge between any pairs of nodes in a given matrix, and it is an
important measurement to indicate if the matrix or graph is organized as Core-
Periphery pattern [9]. The independent probability and normalized independent
probability are formulated as:

IGG =
1AGG

∥AGG∥1
, IGS =

1AGS

∥AGS∥1
, ISS =

1ASS

∥ASS∥1
,

PGG = IGG/I, PGS = IGS/I, PSS = ISS/I.

(6)

where I = IGG + IGS + ISS , 1AGG
represents the number of 1s in the sub-matrix

of gyri-gyri and ∥•∥1 is the number of elements in this sub-matrix. The same
procedure was applied to sub-matrices of gyri-sulci and sulci-sulci, respectively.
We calculate the normalized independent probability, and the averaged results of
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Table 2. The normalized independent probability of gyri and sulci brain networks
under 100 patterns set, and the threshold is 0.9. The format is Mean(Variance).

IP Emotion Motor Gambling Relational WM Social Language
PGG 0.59(0.07) 0.57(0.07) 0.53(0.11) 0.49(0.08) 0.52(0.07) 0.55(0.07) 0.65(0.06)
PGS 0.28(0.03) 0.28(0.02) 0.29(0.03) 0.31(0.02) 0.30(0.02) 0.29(0.03) 0.25(0.03)
PSS 0.14(0.04) 0.15(0.04) 0.18(0.08) 0.20(0.06) 0.18(0.05) 0.16(0.05) 0.10(0.03)

Table 3. The normalized independent probability of gyri and sulci brain networks
under 100 patterns set, and the threshold is 0.7. The format is Mean(Variance).

IP Emotion Motor Gambling Relational WM Social Language
PGG 0.43(0.02) 0.42(0.02) 0.44(0.01) 0.45(0.02) 0.41(0.02) 0.42(0.03) 0.41(0.01)
PGS 0.32(0.01) 0.33(0.01) 0.32(0.01) 0.32(0.01) 0.33(0.01) 0.33(0.01) 0.33(0.01)
PSS 0.24(0.01) 0.25(0.02) 0.24(0.01) 0.23(0.01) 0.26(0.01) 0.25(0.02) 0.26(0.01)

group level are shown in Table 1. The results show that PGG > PGS > PSS , which
confirms that the derived brain networks of gyri and sulci have the core-periphery
organization.

3.2 Validation and Ablation Study

We conduct ablation studies to validate the robustness of the proposed Twin-
Transformer framework and verify the core-periphery relationship of gyri and
sulci under different thresholds. The normalized independent probability of the
relationship matrix under thresholds of 0.7 and 0.9 are shown in Tables 2 and 3,
respectively. We can observe that the normalized independent probability of the
relationship matrix of gyri and sulci under different experimental settings and
pre-defined thresholds all satisfy PGG > PGS > PSS , which further demonstrates
that the gyri-sulci functional brain networks are organized in a core-periphery
manner.

4 Conclusion

In this work, we proposed a novel data-driven Twin-Transformer framework and
applied it to the HCP gray-ordinate tfMRI dataset to characterize the roles of
cortical gyri and sulci on the functional brain networks. With this framework,
we can disentangle the spatial and temporal patterns from the brain signals,
providing us the possibility to analyze the difference between gyri and sulci. The
most important finding in this study is that we identified the core-periphery
relationship between gyri and sulci, as well as the corresponding core-periphery
brain networks. Our results show that core-periphery networks broadly exist
between gyri and sulci across different subjects and tasks. Overall, our proposed
Twin-Transformer contributes to a better understanding of the roles of gyri and
sulci as core and periphery in brain architecture.
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