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Abstract. Glaucoma is an irreversible eye disease that has become the leading 
cause of human blindness worldwide. In recent years, deep learning shows great 
potential for computer-aided diagnosis in clinics. However, the diversity in med-
ical image quality and acquisition devices leads to distribution shifts that com-
promise the generalization performance of deep learning methods. To address 
this issue, many methods relied on deep feature learning combined with the em-
ployment of data-level augmentation or feature-level augmentation, respectively. 
these methods suffer from the limited search space of feature styles. Previous 
research indicated that introducing a diverse set of augmentations and domain 
randomization during training can expand the search space of feature styles. In 
this paper, we propose a Randomized joint Data-feature augmentation and Deep-
shallow feature fusion method for automated diagnosis of glaucoma (RDD-Net). 
It consists of three main components: Data/Feature-level Augmentation (DFA), 
Explicit/Implicit augmentation (EI), and Deep-Shallow feature fusion (DS). DFA 
randomly selects data/feature-level augmentation statistics from a uniform distri-
bution. EI involves both explicit augmentation, perturbing the style of the source 
domain data, and implicit augmentation, utilizing moments information. The ran-
domized selection of different augmentation strategies broadens the diversity of 
feature styles. DS integrates deep-shallow features within the backbone. Exten-
sive experiments have shown that RDD-Net achieves the SOTA effectiveness 
and generalization ability. The code is available at https://github.com/TangYi 
lin610/RDD-Net. 

Keywords: Glaucoma Diagnosis, Deep Learning, Domain Randomization, The 
Fundus Color Image. 

1 Introduction  

Glaucoma is a neurodegenerative disorder characterized by gradual damage to the optic 
nerve and retinal nerve fiber layers, which results in visual field deficits. Early glau-
coma diagnosis and treatment are essential to prevent irreversible vision loss and ulti-
mately blindness [1]. Motivated by the success of deep learning (DL) technology, 
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computer-aided diagnosis based on advanced convolutional neural networks (CNNs) 
has drawn extensive attention and achieved excellent performance, particularly for 
glaucoma disease with the fundus color images [2-10]. Currently, most CNN-based 
methods follow independent and identically distributed patterns. The acquisition of the 
fundus color images is inevitably influenced by various factors, including various de-
vices and qualities. These factors compromise the generalization performance [10]. The 
performance significantly drops when these methods are applied in the unseen domains 
different from the training data which hinders the clinical practice [11]. It is a common 
problem known as domain generalization (DG). 

Recently, many studies have explored the performance significantly drops in the un-
seen domains. Common approaches in mainstream research rely on deep feature learn-
ing combined with the employment of data-level augmentation or feature-level aug-
mentation [12-17]. For example, DiMix proposed a combination of content-style dis-
entanglement and image synthesis. This method improved performance when applied 
to unseen target domains [12]. TriD introduced original statistics to the augmented sta-
tistics and devised the statistics-randomization strategy to boost the robustness of the 
method [13]. CDDSA proposed an efficient contrastive domain disentanglement and 
style augmentation framework for generalizable medical image segmentation [14]. 
GDRNet learned robust features by simulating visual transformations and image deg-
radations for diabetic retinopathy grading [15]. MoEx systematically regulated the 
amount of attention a network pays to the signal in feature moments to improve gener-
alization capability [17]. The research on feature augmentation methods mainly focuses 
on improving feature representation. The data augmentation is typically based on em-
pirical or heuristic methods. Despite their enhanced performance, these methods suf-
fered from the limited search space of feature styles. This limitation may not effectively 
address the complexities encountered in real-world scenarios. Previous studies indi-
cated that the diversity of feature styles and domain randomization during training can 
expand the feature search style space substantially [18,19]. 

Our main contributions are summarized as follows: (1) The proposed RDD-Net en-
ables the method to learn robust features and boost the generalization performance of 
automated diagnosis of glaucoma. (2) A novel statistics randomization strategy for data 
augmentation is proposed. This strategy randomly samples the channel of data-feature 
level statistics from a uniform distribution. We introduce the feature statistics using the 
random method to the augmented statistics to expand the search space. The random 
method consists of explicit augmentation of perturbation of the style of the source do-
main data, and the implicit augmentation of utilizing moments information. (3) The 
domain-randomized augmented data and features are fed into the backbone network for 
automated diagnosis of glaucoma. The deep features and shallow features are collabo-
rated in the backbone. The two publicly available benchmarks are used for the evalua-
tions. 
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2 Methodology 

The overview of Randomized joint Data-feature augmentation and Deep-shallow fea-
ture fusion networks (RDD-Net) is shown in Fig. 1. It consists of three main compo-
nents: Data/Feature-level Augmentation (DFA), Explicit/Implicit augmentation (EI), 
and Deep-Shallow feature fusion (DS). DFA randomly selects data/feature-level aug-
mentation statistics from a uniform distribution. EI involves both explicit augmenta-
tion, perturbing the style of the source domain data, and implicit augmentation, utilizing 
moments information. DS integrates deep-shallow features within the backbone. 

 
Fig. 1. Randomized joint data-feature augmentation and deep-shallow feature fusion networks. 
DFA randomly samples the channel of data-feature level statistics from a uniform distribution. 
EI consists of explicit augmentation and implicit augmentation to expand the search space of 
feature styles. DS deep features and shallow features are combined in the backbone. The fusion 
features are passed through a linear classifier to output the diagnostic results for the automated 
diagnosis of glaucoma. 

2.1 Joint Data-Feature Augmentation with Domain Randomization 

To enhance the diversity of feature styles. Joint data-feature augmentation with domain 
randomization is adopted, randomly sampling the Data-level and the Feature-level 
Augmentation statistics from a uniform distribution (see Fig. 1 (DFA)). Let 
𝑥𝜖𝑅𝐵×𝐶×𝐻×𝑊 be the feature in a mini-batch, where 𝐵, 𝐶, 𝐻, and 𝑊 respectively denote 
the mini-batch size, channel, height, and width. We denoted as 𝑥𝑖𝜖𝑅𝐵×𝐶, 𝑥𝑖 represents 
the input features of the i-th batch in ResNeSt-50. 𝜆1~𝑈(0,1). The output feature 𝐹(𝑥i) 
is calculated as: 

 𝐹(𝑥i) = 𝜆1𝑅(𝑥i) + (1 − 𝜆1)𝑅(𝑆1(𝑥i)) (1) 
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where 𝑆1(𝑥) is the first convolutional layer in the ResNeSt50 network. 𝑅(𝑥) is the out-
put of the augmented feature. 

2.2 Explicit-Implicit Augmentation Randomization 

The random method consists of Explicit augmentation of perturbation of the style of 
the source domain data, and the Implicit augmentation of utilizing moments infor-
mation (see Fig. 2). The explicit augmentation strategy randomly mixes augmented and 
original statistics across the channel-wise axis. The implicit augmentation strategy uti-
lizes the moment information, which is the moments of the learned features from one 
training image is replaced with those from another. We randomly sample 𝜆2~𝑈(0,1). 

 
Fig. 2. Explicit-Implicit Augmentation Randomization Network. EI consists of explicit augmen-
tation of perturbation of the style of the source domain data, and the implicit augmentation of 
utilizing moments information. 

The overall process is summarized as: 

𝑅(𝑦) = 𝜆2𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 (𝑦) + (1 − 𝜆2)𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 (𝑦),

{
𝑦 = 𝑥𝑖 , 𝜆1 = 1

𝑦 = 𝑆1(𝑥𝑖), 𝜆1 = 0
     (2) 

where 𝑦 denotes the intermediate features.  
The mixed feature statistics are applied to perturb the normalized 𝑥𝑖. Randomly sam-

ple the augmented statistics 𝜎(𝑟), 𝜇(𝑟) ∈ RB×C  from a uniform distribution: 𝜎(𝑟) ∼
𝑈(0,1) , 𝜇(𝑟) ∼ 𝑈(0,1) . Next, sample 𝑃 ∈ 𝑅𝐵×𝐶  from the Beta distribution: 𝑃 ∼
𝐵𝑒𝑡𝑎(𝛼, 𝛼). Utilize 𝑃 as the probability to generate the Bernoulli distribution, from 
which 𝜆𝑖 ∈ 𝑅𝐵×𝐶 is sampled: 𝜆3 ∼ 𝐵𝑒𝑟𝑛(𝑃), with α is empirically set to 0.1 [13]. 

 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡(𝑥𝑖) = 𝛾𝑚𝑖𝑥
𝑥𝑖 − 𝜇(𝑥𝑖 )

𝜎(𝑥𝑖 )
+ 𝛽𝑚𝑖𝑥  (3) 

 𝛾𝑚𝑖𝑥 = 𝜆3𝜎(𝑟) + (1 − 𝜆3)𝜎(𝑥𝑖),  𝛽𝑚𝑖𝑥 = 𝜆3𝜇(𝑟) + (1 − 𝜆3)𝜇(𝑥𝑖) (4) 
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The implicit strategy involves combining features from two images or feature sets by 
injecting the moments of images or features 𝐹𝐵  into the feature representation of 
𝐹𝐴:𝐹𝐴

(𝐵)
= 𝜎𝐵

𝐹𝐴−𝜇𝐴

𝜎𝐴
+ 𝜇𝐵. Similar to Mixup and CutMix, it fuses features and labels 

across two training samples. 

 𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡(𝑥𝑖) = 𝑥𝑖 × 𝑠𝑐𝑎𝑙𝑒 + 𝑠ℎ𝑖𝑓𝑡 (5) 

 𝑠ℎ𝑖𝑓𝑡 = 𝜇(𝑥𝑖𝑛𝑑𝑒𝑥) − 𝜇(𝑥𝑖) × 𝑠𝑐𝑎𝑙𝑒 (6) 

𝑥𝑖 is the input feature, 𝑥𝑖𝑛𝑑𝑒𝑥 is a tensor used for index, 𝑠𝑐𝑎𝑙𝑒 =
𝜎(𝑥𝑖𝑛𝑑𝑒𝑥)

𝜎(𝑥𝑖)
. 

2.3 Deep-Shallow Feature Fusion Method 

The domain-randomized augmented data and features are fed into the backbone net-
work for automated diagnosis of glaucoma. We use ResNeSt50 [20] as the backbone. 
It can be observed that we not only utilize the deep features from the stage 4 𝑆4 output 
feature of ResNeSt-50 but also integrate shallow and intermediate features from stage 
1 𝑆1, stage 2 𝑆2, and stage 3 𝑆3 (see Fig. 1 (DS)). We adjust the number of feature chan-
nels in each layer uniformly using convolutional operations and output the modified 
features 𝑆𝑖

′. The output features 𝐹𝑖
′′ from the stage1, stage2, and stage3 of ResNeSt50 

are fed into Convolutional Block Attention Module (CBAM) [21], followed by flatten 
activation. Then the features from different layers are fused with concatenation. The 
overall attention process can be summarized as follows:  

 𝐹𝑖
′ = 𝑀𝑐(𝑆𝑖

′)⨂𝑆𝑖
′ (7) 

 𝐹𝑖
′′ = 𝑀𝑠(𝐹𝑖

′)⨂𝐹𝑖
′ (8) 

where ⨂ denotes element-wise multiplication. 𝐹𝑖
′′ is the final refined output. 𝑀𝑐  is the 

channel attention. 𝑀𝑠 is the spatial attention. 

3 Experiments 

3.1 Implementation Details 

To evaluate the validity of our framework in addressing the challenge of low generali-
zation performance attributed to distributional inconsistency, we devise two distinct 
sets of experiments. 

In the first experiment, we utilize the Refuge2 public dataset [22] obtained from the 
acquisition of four fundus color image devices. Its train and validation subsets served 
as the source domains, while the partitioned test set functioned as the unseen domain, 
denoted as the target domain. In the second experiment, we assess four public datasets, 
Refuge2 [22], Harvard [23], ORIGA [24], and RIMONE [25], which contain 2000, 
1544, 650, 783 samples, using a leave-one-domain approach to simulate real-world 
generalization challenges objectively and concisely.  
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We set the mini-batch size to 8 and adopted the SGD optimizer with a momentum 
of 0.99 for both tasks. The initial learning rate 𝑙0 is set to 0.0001 and decays according 
to the polynomial rule 𝑙𝑡 = 𝑙0 × (1 −

𝑡

𝑇
)0.9, where 𝑙𝑡 is the learning rate at epoch 100 

and T is the total number of epochs set to 100 for classification of glaucoma. For the 
task, the leave-one-domain-out strategy was used to evaluate the performance of each 
DG method, i.e., training on K-1 source domains and evaluating the left domain. 

3.2 Comparison with the State-of-the-Arts 

Result on Refuge2 Dataset. We compared it with other state-of-the-arts methods from 
glaucoma automatic diagnosis in Table 1. 

Table 1. Comparison with state-of-the-arts glaucoma diagnosis methods. The best results are 
highlighted in bold. 

Method ACC (%) AUC (%) 
ConViT [26] 80.45 82.87 
Swin [27] 81.95 82.32 
DENet [28] 80.04 84.70 
AGCNN [29] 81.20 82.16 
ColNet [30] 79.69 85.36 
MagNet [31] 83.20 77.52 
CMSNET [32] 64.16 80.86 
L2T-KT [33] 80.20 86.24 
SeATrans [34] 86.96 88.47 
G-RISK [35] - 86.70 
DS 88.00 89.19 
RDD-Net  93.88 94.90 

We compared the DS method with state-of-the-art diagnostic techniques. It has 
shown a significant improvement. The integration of DFA and EI strategies led to a 
substantial augmentation in performance. Consequently, we combined DFA and EI 
strategies with the DS approach to enhance the generalizability of glaucoma diagnosis 
methods. 
Results on Cross-Dataset. We employed the same classification network and loss 
function to compare our RDD-Net with seven DG methods. DeepAll is the implemen-
tation setup where methods are trained on all source domain data and tested on unseen 
domains. By employing comparative experiments, our objective is to investigate the 
generalization ability and performance of these methods across different domains. The 
results are shown in Table 2. 

Our method demonstrated the state-of-the-art performance in the cross-domain da-
taset experiments, as evidenced by the comparison with advanced experiments detailed 
in Table 2. These findings underscore the exceptional generalization capabilities of our 
method across diverse domains. 
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Table 2. Performance of DeepAll, our RDD-Net, and seven DG methods for automated diag-
nosis of glaucoma. The best results are highlighted in bold. 

Method Refuge2 Harvard ORIGA RIMONE Average 

DeepAll 88.70 76.88 74.15 80.00 79.93 

Mame [36] 90.15 79.99 74.30 77.11 80.39 

GDRNet [15] 88.25 80.63 65.23 85.57 79.92 

Trid [13] 90.35 79.79 74.15 81.86 81.54 

Mix [37] 89.40 79.14 66.31 81.86 79.18 

CAB [38] 87.45 58.42 59.50 83.30 72.17 

DRGen [39] 81.35 74.29 70.00 87.21 78.21 

Fishr [40] 87.50 78.17 77.69 86.60 82.49 

RDD-Net 92.80 82.25 75.85 84.54 83.86 

Ablation Study of Proposed Components. To evaluate the effectiveness of our pro-
posed components, we conducted an extensive ablation study under the cross-dataset 
and presented the ACC score achieved by different methods. The validity of the mod-
ules within the network is shown in Table 3. 

Table 3. Results of cross-domain dataset ablation experiments (ACC(%)). The best results are 
highlighted in bold. 

DS 

DFA EI 

Refuge2 Harvard ORIGA RIMONE Average 
Data 

Fea-
ture 

E I 

- - - - - 90.35 81.93 56.92 82.27 77.87 

√ - - - - 91.85 83.03 59.07 84.12 79.52 

√ - √ √ - 92.10 81.54 59.46 85.36 79.62 

√ √ - √ - 92.20 82.25 66.62 87.63 82.18 

√ √ √ √ - 92.40 82.57 71.12 84.33 82.61 

√ √ √ √ √ 92.80 82.25 75.85 84.54 83.86 

Through a comparative analysis of experimental results with different combina-
tions, it is evident that the simultaneous integration of DS, DFA, and EI shows the most 
effective outcome, achieving an accuracy of 83.86% in the proposed method. Overall, 
we indicated that each component in the proposed method for automatic glaucoma 
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diagnosis contributed positively to the method's performance, and their synergy in com-
bination produced superior results. 

Cross-Dataset Feature t-SNE Visualization Plot. To visualize the distribution of data 
post-enhancement as proposed in this paper, we employ the T-SNE technique to present 
the augmentation feature (see Fig. 3). 

 
Fig. 3. The scatter plot of the statistics produced by our data augmentation strategy using 2D t-

SNE on four datasets. 

Fig.3 is the scatter plot of the statistics produced by our data augmentation strategy 
using 2D t-SNE on four datasets. Different colors denote the image statistic features 
from different datasets. From Fig.3, Refuge2 and Harvard produce better points sepa-
ration. Meanwhile, as is shown in Tab.2, the ACC of Refuge2 and Harvard are im-
proved significantly compared with the SOTAs. It indicates that broadening the feature 
search space is vital to improve the generalization. 

4 Conclusion 

In this paper, we proposed the RDD-Net to expand the search space of feature styles 
for automated diagnosis of glaucoma. RDD-Net consists of three main components: 
Data/Feature-level Augmentation (DFA), Explicit/Implicit augmentation (EI), and 
Deep-Shallow feature fusion (DS). DFA randomly selects data/feature-level augmen-
tation statistics from a uniform distribution. EI involves both explicit augmentation, 
perturbing the style of the source domain data, and implicit augmentation, utilizing mo-
ments information. The randomized selection of different augmentation strategies 
broadens the diversity of feature styles. DS integrates deep-shallow features within the 
backbone. Extensive experiments have shown that RDD-Net achieves the SOTA effec-
tiveness and generalization ability. 
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