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Abstract. In clinical practice, tri-modal medical image fusion, com-
pared to the existing dual-modal technique, can provide a more compre-
hensive view of the lesions, aiding physicians in evaluating the disease’s
shape, location, and biological activity. However, due to the limitations
of imaging equipment and considerations for patient safety, the qual-
ity of medical images is usually limited, leading to sub-optimal fusion
performance, and affecting the depth of image analysis by the physician.
Thus, there is an urgent need for a technology that can both enhance im-
age resolution and integrate multi-modal information. Although current
image processing methods can effectively address image fusion and super-
resolution individually, solving both problems synchronously remains ex-
tremely challenging. In this paper, we propose TFS-Diff, a simultaneously
realize tri-modal medical image fusion and super-resolution model. Spe-
cially, TFS-Diff is based on the diffusion model generation of a random
iterative denoising process. We also develop a simple objective function
and the proposed fusion super-resolution loss, effectively evaluates the
uncertainty in the fusion and ensures the stability of the optimization
process. And the channel attention module is proposed to effectively in-
tegrate key information from different modalities for clinical diagnosis,
avoiding information loss caused by multiple image processing. Extensive
experiments on public Harvard datasets show that TFS-Diff significantly
surpass the existing state-of-the-art methods in both quantitative and
visual evaluations. Code is available at https://github.com/XylonXu01
/TFS-Diff.

Keywords: Tri-Modal Medical Image Fusion · Super-Resolution · Con-
ditional Diffusion Model.

1 Introduction

Multimodal medical images have become an indispensable tool in modern med-
ical diagnosis and treatment planning. Computer Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), and Single
Photon Emission Computed Tomography (SPECT) each provide unique and
complementary information [1], revealing the anatomical structure, physiologi-
cal function, and molecular changes in the human body, respectively. However,
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due to the different imaging principles underlying these imaging technologies,
images produced by various sensors exhibit significant differences in information
content. Although the diversity of imaging enriches the sources of information for
clinical diagnosis, it also poses additional challenges for physicians in integrating
multi-source image information to make accurate diagnoses [10].

Multimodal image fusion holds promise for combining information from im-
ages of different modalities [14,3] to obtain a more comprehensive diagnostic
view. Currently, image fusion is mainly divided into methods based on deep
learning [15,34] and traditional methods [12,33]. Deep learning-based methods
often use generative adversarial networks (GANs) to simulate the distribution
of fused images to obtain high-quality fused images [17]. Although GAN-based
methods can generate satisfactory fused images, they suffer from issues such as
training instability, mode collapse and lack of interpretability. As an improve-
ment, fusion methods based on Diffusion [20,7] have been proposed, which gen-
erate high-quality images by simulating the diffusion process of restoring images
corrupted by noise to clean images, thereby mitigating common problems like
training instability and mode collapse in GANs, and their generation process
is interpretable. For example, Zhao et al. [35] proposed using DDPM for fusion
tasks and employing a hierarchical Bayesian method to model the subproblems
of maximum likelihood estimation. However, no deep learning fusion methods
for tri-modal medical images have emerged, and only a few traditional meth-
ods have conducted preliminary research on this problem. For instance, Jie et
al. [9] proposed a tri-modal medical image fusion based on an adaptive energy
selection scheme and sparse representation, using sparse representation to fuse
texture components, and adaptive energy selection scheme to fuse cartoon com-
ponents. Jie et al.[8] proposed a tri-mode medical image fusion and denoising
method based on BitonicX filtering. This method analyzes pixels in terms of
gradient, energy, and sharpness to achieve medical image fusion and denoising.

Simultaneously, in medical imaging, due to various factors such as the resolu-
tion limits of imaging equipment, time constraints on image acquisition, and the
radiation doses patients can tolerate, the resulting medical images often have lim-
ited resolution. Despite this, there is still an urgent demand for high-resolution
(HR) medical images in clinical practice [13]. Currently, deep learning methods
for super-resolution can capture fine details and accurately preserve the original
structure of images [31,25,23]. For example, Mao et al. proposed a decoupled con-
ditional diffusion model and extended it to multi-contrast MRI super-resolution,
effectively estimating the uncertainty of the restoration and ensuring a stable
optimization process [16,18]. However, performing image super-resolution and
image fusion in separate steps can propagate and amplify artifacts generated
in the first step, thereby degrading the quality of the image. To address this
issue, research has proposed end-to-end fusion and super-resolution methods for
low-resolution images [29,11,28]. For instance, Xiao et al. [28] introduced a het-
erogeneous knowledge distillation network that embeds multi-layer attention to
emphasize the texture details of visible light images and the prominent targets
of infrared images to achieve both infrared and visible light image fusion and
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super-resolution simultaneously. However, this approach is only effective for the
fusion of infrared and visible light images and lacks generalizability to medical
images, and it cannot achieve fusion and super-resolution for three modalities.

Overall, although existing methods [9,8,31] have achieved significant accom-
plishments in improving image quality, enhancing feature extraction, and im-
proving single-modality medical image processing, they still face challenges in
several key aspects: (1) Most research focuses on processing dual-modal source
images, and there is a relative lack of in-depth studies on image processing prob-
lems that cover three modalities. (2) Current methods for medical image pro-
cessing mostly focus on executing single tasks, lacking strategies for jointly opti-
mizing fusion and super-resolution tasks. (3) Existing technologies that achieve
both image fusion and super-resolution have limited generalization capabilities
for tri-modal medical images.

To address these challenges, we propose an innovative Tri-modal Conditional
Denoising Fusion-Super Resolution Diffusion model (TFS-Diff). To the best of
our knowledge, this is the first study to achieve tri-modal medical image fusion
and super-resolution tasks synchronously in an end-to-end manner. Our work’s
main contributions are threefold:

1. The TFS-Diff model synchronously implements end-to-end tri-modal image
fusion and super-resolution processing, eliminating the need for manually
designing complex fusion and super-resolution network architectures. This
significantly simplifies the model design process.

2. We propose a feature fusion module based on a channel attention mechanism
that can learn and extract shared features and modality-specific features
from different modal medical images.

3. A new fusion and super-resolution loss function is proposed to retain the
sharpness, texture and contrast information of the medical images into the
fused result. Meanwhile, it guarantees the stability of the model training
process and the high quality of the fused results.

2 Method

2.1 Overall Architecture

For multimodal image fusion and super-resolution tasks, we propose TFS-Diff,
a method based on a conditional denoising diffusion probability model. This
method aims to generate high-resolution fused images that contain rich multi-
modal information and are highly consistent with the source images. As shown
in Fig. 1, TFS-Diff achieves precise tri-modal medical image fusion and its super-
resolution through a forward and reverse Markov chain process.

Taking the fusion of MR-T1, MR-T2, and SPECT as an example, let the low-
resolution of the three images be denoted as x ∈ RHW , y ∈ RHW , and s ∈ RHW

respectively, and the high-resolution fusion result be represented as I0 ∈ R3HW .
The three modal images x, y, s are input into the model simultaneously, first
upsampled to the target resolution through bicubic interpolation sampling of x,



4 Y. Xu et al

CC

S
cale

IT

G
A

P

F
C

R
eL

U

F
C

S
ig

m
o

id

zT

TMFA Block

Attention Attention

U-Net

Attention Attention

U-NetItFusion Image

( 1)T −

Concatenation

MR-T1 MR-T2 SPECT

Ground Truth

CC

CC

S
o
u

rc
e Im

a
g
e( B

ic
u

b
ic

×
8
)

Fig. 1. Implementing super-resolution and fusion model structures synchronously. Tak-
ing MR-T1/MR-T2/SPECT fusion as an example, the original images need to be
sampled to the specified resolution through bicubic interpolation as the input for the
TFS-Diff model, and the output of TFS-Diff is compared with the Ground Truth to
calculate the loss.

y, s, and then feature extraction is performed through the TMFA Block (see
Section 2.2) to obtain zt = ε(x, y, s), which is concatenated on the channel
dimension with It ∼ N (0, I). The objective function optimized by TFS-Diff is:

LTFS := Eε(x,y,s),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, It, γt)∥22

]
(1)

where, γt represents the noise variance, and ϵθ is the UNet [21] used for noise
prediction. zt is obtained through the TMFA Block.

The backbone of TFS-Diff adopts the U-Net structure from SR3 [22], with
z and t as inputs to ϵθ. The backbone consists of a contracting path, an expan-
sive path, and a diffusion head. Unlike the U-Net in DDPM [7], TFS-Diff uses
residual blocks from BigGAN [2]as connections and incorporates a self-attention
mechanism. Both the contracting and expansive paths are comprised of 4 convo-
lutional layers. The diffusion head consists of a single convolutional layer, used
for generating predicted noise[30]. Parameters are initialized using the Kaiming
initialization method[6].

2.2 Tri-modal Fusion Attention (TMFA) Block

During the process of tri-modal medical image fusion, different modalities pro-
vide unique perspectives on anatomical structures, physiological functions, and
molecular levels. Existing fusiong methods overlook the complementarity be-
tween modalities and the differences in feature importance across different chan-
nels. The main purpose of the TMFA Block is to extract deep feature of the
concatenated multimodal images before entering the diffusion phase of the fu-
sion super-resolution network. It utilizes a channel attention mechanism to learn
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the importance weights of each channel, enhancing useful features and suppress-
ing irrelevant information. This approach highlights the most critical information
for clinical diagnosis across different modalities.

As shown in Fig.1, the structure of the TMFA Block is based on the classic
SE (Squeeze-and-Excitation) block, which has been customized to adapt to tri-
modal image. Initially, a Global Average Pooling (GAP) layer compresses the
features of the input images C = concatenate(x, y, s) to capture global context
information. Subsequently, a bottleneck structure composed of two Fully Con-
nected (FC) layers is introduced to learn the nonlinear relationships between
channels, where the ReLU activation function is applied to the first FC layer,
and the Sigmoid activation function is applied to the second FC layer, to out-
put the attention weights of the channels. Finally, these attention weights are
utilized to adjust the importance of each channel in the original feature image,
thus accomplishing feature recalibration to obtain the feature Zc.

2.3 Fusion super-resolution joint loss function

To make TFS-Diff training converge more stably, a new joint loss design is
implementedLPSF , combining Mean Squared Error (MSE) loss and Structural
Similarity Index (SSIM) loss. LPSF leverages the advantages of MSE loss in
terms of pixel-level reconstruction accuracy, as well as the effectiveness of SSIM
loss in maintaining image structural information and enhancing visual quality to
optimize both the pixel accuracy and visual quality of the image simultaneously.

LPSF = λ1LMSE + λ2Lssim (2)

LMSE =
1

N

N∑
i=1

(Pi − Ti)
2 (3)

LSSIM =
(2µPµT + c1) (2σPT + c2)

(µ2
P + µ2

T + c1) (σ2
P + σ2

T + c2)
(4)

where λ1, λ2 ∈ (0, 1] represent the weights of the two losses, respectively.

3 Experiments

3.1 Experimental Detail

The dataset covers five different types of registered medical images, includ-
ing MR-T2/MR-Gad/PET, CT/MR-T2/SPECT, MR-T1/MR-T2/PET, MR-
T2/MR-Gad/SPECT, and MR-T1/MR-T2/SPECT. All source images are from
the whole brain atlas database of Harvard Medical School[24], We randomly
divided the data into 84, 10 and 25 groups as training set, validation set and
test set respectively.The resolution of the training and testing images is 256x256,
which was downsampled using bicubic interpolation to construct super-resolution
datasets with different magnification levels (8x, 4x, 2x).The Ground Truth is
fused by the BitonicX [8].
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Five state-of-the-art (sota) methods were used for comparison, including
three dual-modal fusion methods: CDDFuse [34], TGFuse [19], DDFM [35], and
two tri-modal fusion methods: BitonicX Filtering [8], CTSR [9]. Additionally,
the SR3 model [22] was used as the baseline for super-resolution.

The model was optimized using the Adam optimizer with a fixed learning
rate of 1e-4 and a diffusion step count T of 4000. The model was trained for
800,000 steps on a computer equipped with four NVIDIA GeForce RTX 3090
GPUs, with a batch size set to 32.

3.2 Objective evaluation metric

In this study, we evaluated the proposed model’s performance using several quan-
titative metrics: Average Gradient (AG) [4], Mean Squared Error (MSE) [27],
Visual Information Fidelity (VIF) [5], Structural Similarity Index (SSIM) [26],
Peak Signal-to-Noise Ratio (PSNR)[26], Perceptual Image Quality Loss (LPIPS)
[32], Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
These metrics assess the model’s performance in various aspects: AG measures
image edge and texture clarity; MSE, MAE, and RMSE gauge pixel-level accu-
racy; VIF evaluates visual quality; SSIM and PSNR judge structural similarity
and noise ratio, indicating image visual effects and fidelity; LPIPS assesses per-
ceptual quality from a deep learning perspective.

3.3 Comparison with SOTA methods

×2

×4

×8

MR-T1/Gad

(Bicubic)

TFS-Diff

(ours)

CDDFuse

+SR3

DDFM

+SR3

BitonicX

+SR3

CTSR

+SR3

TGFuse

+SR3

MR-T2

(Bicubic)

SPECT/PET

(Bicubic)

Fig. 2. Tri-modal fusion on the Harvard dataset showed super-resolution results
at amplification factors 2, 4, and 8, using MR-T1/MR-T2/SPECT, MR-Gad/MR-
T2/SPECT, and MR-T1/MR-T2/PET configurations, respectively.

Table 1 and Fig.2 respectively show the objective evaluation metrics and
fusion results of TFS-Diff, CDDFuse, DDFM, TGFuse, BitonicX and CTSR
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methods. From Table 1, it can be observed that TFS-Diff ranks first in all evalu-
ation metrics, demonstrating its outstanding performance. Specifically, under the
conditions of resolutions enlarged by ×8, ×4, and ×2, the methods of TGFuse,
DDFM and CDDFuse rank second to TFS-Diff in overall objective evaluation
metrics, respectively. Additionally, Fig.2 clearly reveals the problem that the
SR3 model, when applied to the DDFM method for super-resolution, fails to
completely eliminate noise at three different magnification rates. As the magni-
fication rate increases, the quality of the fused images obtained by the CTSR,
TGFuse, and BitonicX methods declines. In contrast, TFS-Diff shows its effec-
tiveness in maintaining the texture and color information of the source images
under the three types of magnifications.Due to space constraints, more detailed
renderings will be shown in the supplemental documentation

Table 1. The objective results for Harvard dataset (Bold: the best; comparison meth-
ods all use SR3 for super-resolution)

Scale ×2
Metrics MSE ↓ VIF ↑ SSIM ↑ PSNR ↑ LPIPS ↓ MAE ↓ RMSE ↓ AG ↑
BitonicX 2634.907 0.471 0.579 14.42 0.419 53.95 110.82 8.913
CDDFuse 3519.701 0.501 0.759 12.74 0.339 54.92 120.62 8.237
CTSR 2733.143 0.452 0.611 14.11 0.435 55.74 114.17 9.436
DDFM 2920.907 0.480 0.549 13.50 0.496 56.96 107.37 8.237
TGFuse 3013.091 0.479 0.600 14.13 0.424 54.58 110.61 9.945
Ours 2021.23 0.577 0.818 15.27 0.319 44.80 103.64 9.959
Scale ×4
Metrics MSE ↓ VIF ↑ SSIM ↑ PSNR ↑ LPIPS ↓ MAE ↓ RMSE ↓ AG ↑
BitonicX 2010.889 0.424 0.743 15.26 0.432 49.16 106.78 7.475
CDDFuse 3390.033 0.430 0.671 13.08 0.415 56.96 119.82 7.732
CTSR 2159.267 0.426 0.672 14.99 0.439 49.74 107.16 7.577
DDFM 2511.116 0.458 0.694 13.90 0.489 49.04 99.45 7.082
TGFuse 2213.12 0.448 0.715 15.32 0.415 47.86 102.75 8.109
Ours 1740.448 0.560 0.788 15.78 0.340 46.11 97.98 8.152
Scale ×8
Metrics MSE ↓ VIF ↑ SSIM ↑ PSNR ↑ LPIPS ↓ MAE ↓ RMSE ↓ AG ↑
BitonicX 4413.324 0.394 0.532 12.14 0.521 64.89 124.32 13.558
CDDFuse 5310.433 0.378 0.511 11.21 0.535 70.20 132.68 12.671
CTSR 5480.484 0.369 0.568 11.56 0.549 72.41 135.18 13.612
DDFM 4998.928 0.307 0.466 11.50 0.622 68.10 125.33 12.337
TGFuse 4142.136 0.401 0.566 12.69 0.508 62.77 121.60 13.193
Ours 1559.803 0.579 0.980 16.50 0.299 40.68 96.42 13.77

3.4 Ablation Study

This section aims to verify the effectiveness and contribution of the TMFA Block
and PSF Loss in our TFS-Diff.



8 Y. Xu et al

1. w/o TMFA Block: We removed the TMFA Block to assess its significance
in feature extraction and information fusion processes.

2. w/o PSF Loss: We replaced PSF Loss with MSE loss to evaluate the
importance of PSF Loss in balancing pixel accuracy and visual quality.

Table 2. Ablation Study on the Harvard dataset(Bold: the best).

Harvard dataset(×2)
Metrics VIF↑ SSIM↑ PSNR↑ AG↑ MSE↓ LPIPS↓ MAE↓ RMSE↓
w/o TMFA Block 0.468 0.761 14.63 9.529 2777.63 0.362 60.60 120.18
w/o PSF Loss 0.452 0.802 14.76 9.021 2171.51 0.351 55.07 120.81
TFS-Diff 0.577 0.8180 15.27 9.959 2021.23 0.319 44.80 103.64

Harvard dataset(×4)
Metrics VIF↑ SSIM↑ PSNR↑ AG↑ MSE↓ LPIPS↓ MAE↓ RMSE↓
w/o TMFA Block 0.558 0.746 15.32 7.13 1907.22 0.404 56.42 114.96
w/o PSF Loss 0.545 0.728 15.67 7.801 1761.69 0.365 51.42 112.71
TFS-Diff 0.560 0.788 15.78 8.152 1740.44 0.340 46.10 97.98

Harvard dataset(×8)
Metrics VIF↑ SSIM↑ PSNR↑ AG↑ MSE↓ LPIPS↓ MAE↓ RMSE↓
w/o TMFA Block 0.539 0.792 15.40 13.60 1871.20 0.347 45.81 105.15
w/o PSF Loss 0.550 0.569 15.63 12.67 1712.41 0.354 50.82 108.77
TFS-Diff 0.579 0.980 16.50 13.77 1559.80 0.299 40.68 96.42

As shown in the Table 2, the ablation study results confirmed the significant
contribution of the TMFA Block and PSF Loss to enhance the performance of the
tri-modal medical image fusion super-resolution model. The combination of these
components not only optimized pixel-level reconstruction but also significantly
improved the visual quality of the images, thus providing an effective solution
for complex medical image processing tasks.

4 Conclusion

This study proposed a conditional diffusion model, TFS-Diff, for tri-modal med-
ical image fusion super-resolution, introducing two key innovations: the TMFA
Block and PSF Loss, which ensure the generation accuracy of the diffusion model.
Through comprehensive experimental validation, our approach has achieved sig-
nificant improvements in detail restoration and visual quality compared to ex-
isting technologies.

The TMFA block optimized the model’s capability to fuse features from dif-
ferent modal medical images, enhancing the efficiency and quality of information
integration. Simultaneously, the design of PSF Loss successfully balanced pixel-
level accuracy and structural similarity, further enhancing the model’s perfor-
mance in image reconstruction. Ablation results confirmed the significant contri-
bution of these two components to model performance improvement, reflecting
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their application value in complex medical image processing tasks. Moreover, if
TFD-Diff is applied to tri-modal medical image fusion medical instruments, it
will enhance the diagnostic efficiency of doctors and reduce the time and money
spent by patients.

Our future work will integrate large language models to assist in modeling
the diffusion process of TFS-Diff, which is expected to enhance the model’s
generalizability across various types of medical images.
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