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Abstract. The integration of vision-language models such as CLIP and
Concept Bottleneck Models (CBMs) offers a promising approach to ex-
plaining deep neural network (DNN) decisions using concepts under-
standable by humans, addressing the black-box concern of DNNs. While
CLIP provides both explainability and zero-shot classification capability,
its pre-training on generic image and text data may limit its classifica-
tion accuracy and applicability to medical image diagnostic tasks, creat-
ing a transfer learning problem. To maintain explainability and address
transfer learning needs, CBM methods commonly design post-processing
modules after the bottleneck module. However, this way has been inef-
fective. This paper takes an unconventional approach by re-examining
the CBM framework through the lens of its geometrical representation
as a simple linear classification system. The analysis uncovers that post-
CBM fine-tuning modules merely rescale and shift the classification out-
come of the system, failing to fully leverage the system’s learning poten-
tial. We introduce an adaptive module strategically positioned between
CLIP and CBM to bridge the gap between source and downstream do-
mains. This simple yet effective approach enhances classification perfor-
mance while preserving the explainability afforded by the framework.
Our work offers a comprehensive solution that encompasses the entire
process, from concept discovery to model training, providing a holistic
recipe for leveraging the strengths of GPT, CLIP, and CBM. Code is
available at: https://github.com/AIML-MED/AdaCBM.

Keywords: Explainable Diagnosis · Interpretability · Concept Bottle-
neck Model · Model Fine-tuning.

1 Introduction

Despite the rapid development of medical AI, distrust among healthcare practi-
tioners and the general public hinders the deployment of AI systems in clinical
practice. The demand for transparent AI reasoning [12] has led to the emergence
of explainable AI (XAI) research. Visualizing saliency maps [11, 3, 22] and class
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activation maps [26, 18] are typical XAI methods, although several research [1,
17] pointed out that the visualization can be inaccurate and difficult to act
on. Concept Bottleneck Model (CBM) [9] interprets deep learning models in
language-described terms (namely text concepts, or simply, concepts) and shows
how decision weighs on those concepts. CBM allows users to judge and exclude
non-relevant concepts to adjust the model prediction at inference time, which
can help clinicians understand and build trust in such an AI system. Never-
theless, applying CBM is challenging in medical image diagnosis due to the
time-consuming and costly process of labeling medical concepts on images.

Recently, several ‘label-free’ CBM approaches [14, 23, 15] utilize Large Lan-
guage Models (LLMs; e.g., GPT [2]) to generate disease attributes and subse-
quently use them as concepts to obtain concept-image association scores from
Vision-Language Models (VLMs; e.g., CLIP [16]). Despite commendable inter-
pretability capability, the label-free CBM methods face three main challenges
in medical image classification tasks. (1) CLIP was pre-trained on images and
texts in the general domain, which has low zero-shot capability in medical domain
tasks. (2) CBM generally needs a large concept base to perform well, but that
would reduce the concept weight sparsity and decrease the model interpretabil-
ity as shown in [5, 6]. (3) Generating and selecting accurate medical concepts
for pathological classification is practically challenging. Previous works [23, 14]
employ rule-based concept filtering/trimming [14] and concept shortening (e.g.,
using a secondary language model [23]) to post-process GPT generated concepts,
which are difficult to generalize for non-technical users.

Addressing the first two challenges together, this work first re-frames the
CBM framework to a linear classification system. We identify that the “inputs
to the system” should be trained in order to improve the overall fine-tuning
ability while adequately preserving CLIP’s representation power and CBM’s in-
terpretability. Then, we design a simple yet effective learnable adapter module
placed between CLIP and CBM, enabling high classification performance even
with a low number of concepts. For the last challenge, we design a fully prompt
engineering-based concept generation to control concept conciseness and gener-
ated disease characteristics (visual appearances, e.g., color and shape). We also
design a concept utility selection method that employs established statistical
tests to evaluate concepts against the downstream task utility.

In summary, our contributions are as follows. (1) We re-examine CBM as
a linear classification system and derive the location between CLIP and CBM
models as the optimal location to add model capacity to mitigate the CLIP
and downstream task domain gap. (2) We design a fully prompt engineering-
based concept generation strategy utilizing GPT-4, which allows users to gen-
erate clinically relevant concepts adhering to targeted concept conciseness and
visual attributes of the target diseases (e.g., color and shape). (3) Based on the
t-statistics and Pearson’s r tests, we develop sensible concept selection criteria
that maximize concept utility toward the downstream medical diagnostic task.
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2 Methodology

CLIP-based concept bottleneck model. CLIP offers a well-pretrained basis
to construct label-free concept bottleneck models (CBM) [9]. Let x, t ∈ Rd be
the image and text embeddings after being processed by respective encoders,
CLIP matches the image and language embeddings by their cosine similarity:
s = cos(x, t) = x·t

∥x∥∥t∥ . By defining S = [s1, . . . , sK ]⊺ ∈ RK which contains the
cosine similarity scores for K concepts T = {1, . . . , tK} and C = {c1, . . . , cn} a
set of n classes, we show the class inference mechanism using CBM as p(C|x, T ) =
softmax(W⊺S+b), where W ∈ RK×n is a class-concept weight matrix [23] and
b ∈ RK denotes class bias. Ignoring the softmax for simplicity, we show a class
logit is computed by:

zi =
K∑
j=1

Wjisj + bi. (1)

To interpret the CBM, the individual Wjisj represents the concept contribution
of tj toward a class prediction of ci, shown as the red colored bars in Fig. 2.
Low adaptation power of CLIP-based CBMs. In the CLIP-based CBMs,
the image and text encoders are typically not fine-tuned [14, 23] which leaves the
class-concept weight matrix W and class bias b the only trainable parameters
to fit a down-stream task. This will require a large number of K to increase the
size of W to sufficiently learn toward a downstream task but that contradicts
the goal of improving human interpretability because interpretability requires
fewer activated weight values. Weight sparsity promotion [14, 15] is commonly
employed; yet, sparse parameters can restrict the adaptation power of the model
So, the question is where else can we add parameters while maintaining (1)
the CBM interpretability (i.e., CBM is the only inference pathway, instead of
creating a residual fitting branch for inference as in [24]) and (2) maintain the
sparsity of the class-concept weight matrix W. To find an answer to this question,
we review CBM from a fresh geometrical representation perspective.
CBM is a linear classification system. The geometrical representation of a
CLIP-based CBM is illustrated in Fig. 1 using a 2D example. The geometrical
meanings of CBM quantities in the system are described below.

– x̂ and ∥x∥ are the unit vector and norm of the image embedding x. Since
CLIP uses cos similarity, here x̂ is a point to be classified by the system,
geometrically speaking, it is a d-dimensional point that sits on the unit
hyper-sphere (gray circle).

– t̂j and ∥tj∥ are the unit vector and norm of the text embedding tj . t̂j defines
the normal vector of the classification boundary (solid black line) derived
from a text concept. In simple words, a text encoder here is a projector that
projects any text sentence to a classification boundary.

– x̂ · t̂j is equivalent to the cosine similarity sj computed by the CLIP model.
Geometrically, it defines the point’s classification response.

– Vji and αj are post-processing scalar type of scaling and shift for any point
classified by t̂j . The effects of Vji and αj are visualized by the arrows of the
respective color in Fig. 1.
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Fig. 1. A geometrical representation of the CBM framework. The cosine similarity of
an image x and a text concept tj is represented by the distance from the point x̂ on
the sphere to the classification boundary (black line), i.e., the purple x̂ · t̂j quantity.
Our adapter module provides adaptation ability to x as indicated by the green arrows.

Based on the geometrical representation, we reformulate zi in Eq. 1 to:

zi =
K∑
j=1

Wjisj + bi =
K∑
j=1

(
Vji∥x∥∥tj∥

)
(x̂ · t̂j + αj) + βi, (2)

where the original class-concept weight Wji decomposes to Wji = Vji∥x∥∥tj∥.
For completeness, we introduce an additional bias parameter β ∈ Rn which can
composite the original class bias as bi =

∑K
j=1

(
Vji∥x∥∥tj∥

)
αj + βi. Therefore,

we can see that the fine-tuning of CBM class-concept weights only learns the
scalars Vji, αi, and βi, passively accepting the outcome of the classification
system rather than utilizing it. Essentially, utilizing the learning capacity of the
classification system means changing the input point positions and/or placement
of the decision boundary but medical image classification tasks do not often
contain paired text data to meaningfully learn the text embedding, so tj should
ideally be fixed, leaving the input x the only sensible quantity to change. In
granular detail, the change can be further decomposed into (1) angular change
of x̂ along the surface of the sphere and (2) vector norm ∥x∥, annotated by the
green arrows in Fig. 1.
An adaptive CBM (AdaCBM) to mitigate domain difference. The above
analysis essentially depicts a transfer learning problem but just tuning the image
backbone, which is at risk of overfitting if the full backbone is tuned especially
when a large capacity backbone is used. Therefore, we introduce a learnable
module x 7→ F (x) ∈ Rd with a controlled number of parameters to mitigate the
domain differences. In essence, AdaCBM brings the image embedding x closer
to the text embedding tj by pushing x toward tj if the image contains the
concept, or otherwise toward -tj . The adapter module is realized by a stacked
linear layer with Leaky ReLU [13] activation using a 0.01 negative slope setting.
Furthermore, to promote the sparsity in Vji, we follow the execution of LaBo [23]
to initialize the CBM with a pre-selected k number of concepts for a class ci (i.e.,
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k = K
n ). But unlike LaBo which still allows co-adaptation [20] from concept

responses for other classes, we assign a stationary mask M ∈ RK×n which forces
the concept contribution only learned from the selected concepts, i.e., Mji = 1 if
tj was selected for ci, otherwise, 0. To summarize, the logit equation integrated
with the AdaCBM is:

zi =
K∑
j=1

(M⊙V)ji
(
F (x) · tj + α′

j

)
+ βi, (3)

where we note α′
j = ∥F (x)∥∥tj∥α for simplicity. The initial values are set to zeros

for α′
j and βi. For V, the initial values are set to M. During the training, F (x)·tj

can be used without explicit normalization to compute the cosine similarity.
During CBM interpretation, it can be decomposed into the norms and cosine
similarity for analysis as shown in Table 2-(1) in the supplementary to illustrate
the effectiveness of each term.
Selecting task-relevant medical concepts. The feasibility of label-free CBMs
lies in the powerful text generation ability of the LLMs (e.g., GPTs [2]). With
the CLIP’s ability to turn any text into embedding, we can virtually generate an
indefinite amount of concepts regardless of semantic relevance. Therefore, con-
cept selection becomes an important step in maintaining the interpretability of
a label-free CBM. To judge the usefulness of a concept, we define the utility of a
concept by its discriminability toward a downstream task class, i.e., U(t, c), rep-
resented by the t-statistic used in Welch’s t-test: U(t, c) = µc−µc′√

σ2
c

Nc
+

√
σ2
c′

N
c′

, where

µc =
∑

x∈X ,l=c x · t is the mean of dot products where the image embeddings
share the same label l = c. µc′ =

∑
x∈X ,l ̸=c x · t computes the opposite. Here

X denotes the set of image embeddings in the training set, σ2 and N denote
the respective variance and number of samples. In brief, the t-statistic measures
whether the population means µc and µc′ are different. Here we look for con-
cepts that achieve higher responses for the image embeddings of the target class,
i.e., µc ≫ µc′ and detected by argmaxt∈T U(t, c), from a pool of T candidate
concepts. When selecting a group of concepts for class c, similar concept re-
sponse patterns will reduce the discriminative power of the group, therefore we
introduce Pearson’s r to reduce the inclusion of highly correlated concepts by a
predetermined threshold γ. Empirically we found γ = 0.9 is sufficient to remove
the concepts that are worded similarity to each other. Our concept selection
algorithm is illustrated in Algorithm 1 in the supplementary material.
Prompt guided medical concept generation. Leveraging the power of GPT-
4, we demonstrate the flexibility and effectiveness of prompt engineering in con-
cept generation, we emphasize the concept generation on two aspects: visually
represented medical concepts and concept conciseness. For visually represented
medical concepts, we prompt GPT-4 to describe a disease class’s visual ap-
pearance in four categories: color, shape, size, and texture. For example, for
generating concepts that represent the color of a disease, we do “What are the
{colors} of {disease name} can be present in an image of {disease name}?”. To
constrain concept conciseness, we prompt GPT-4 to make concepts in different
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Table 1. Classification accuracy for HAM(skin disease images), BCCD(cytology im-
ages), and DR(fundus images) datasets using our generated concepts. LaBo (10K) runs
the LaBo model until it reaches 10K epochs.

Non-interpretable models Interpretable CBM models

Method Linear + Backbone +LoRA Linear-probe Label-free LaBo [23] LaBo AdaCBM
CLS FT [7] & FT [10] CBM [14] (10K) [23] (ours)

Concept - - - - - Submodular Submodular Concept Utility
Selection Selection (ours)

k - - - - - 10 20 50 10 20 50 10 20 50

HAM 80.9±0.6 67.9±0.6 78.8±0.6 80.7±0.4 78.9±0.3 73.0±0.1 74.1±0.5 74.9±0.5 75.6±0.9 77.7±0.5 80.3±0.7 82.8±0.5 82.8±0.3 81.9±0.9

BCCD 74.5±0.4 43.2±0.3 72.4±0.2 74.3±0.4 63.7±1.5 54.5±0.2 56.73±0.4 57.6±0.3 66.1±0.3 68.7±1.0 69.2±0.8 74.1±0.9 73.8±1.0 74.3±0.7

DR 78.0±0.1 73.7±0.2 71.1±0.4 77.5±0.2 75.7±0.1 74.6±0.1 75.4±0.1 75.8±0.1 74.7±0.1 76.0±0.1 77.2±0.1 78.3±0.1 78.3±0.1 78.2±0.1

word lengths, 3 to 4 words, 5 to 6 words, and 8 to 10 words. We add to the
above prompt by commanding, e.g., “each sentence will be {8}-{10} words.” On
average, we found the average returned concept word lengths are 4.4, 6.0, and
8.7 respectively. This utility helps us to understand the task relevance of the
selected concepts. For example in Table 1-Left in the supplementary material, a
noticeably higher proportion for shape and texture-based concepts was selected
for the HAM dataset while the preference of concept conciseness is marginal
toward descriptive concepts (high word counts).

3 Experiments

Datasets. We evaluate three publicly available medical image classification
datasets encompassing different diseases and imaging modalities. (1) HAM10000
(HAM) [21] is a skin disease dataset that comprises 10,015 dermatoscopic images
collected over 20 years from two different sites, with 8,010 images available for
training and 1,005 for testing. (2) BCCD [19] is a microscopic cytology image
dataset to recognize four types of blood cells in a collection of 9,957 training im-
ages and 2,487 testing images. (3) DR [4] is a fundus-based diabetic retinopathy
(DR) dataset consisting of five grades from no to proliferative DR, comprising
35,126 and 53,576 images for training and testing respectively.
Compared methods. We compare our AdaCBM with the following methods:
(1) LaBo [23], (2) Label-free CBM [14], (3) fitting a linear classification (Linear
CLS) model with a fixed backbone, (4) Linear CLS with backbone fine-tuning,
(5) Linear-probe [10] followed by backbone fine-tuning, and (6) LoRA [7] fine-
tuning of backbone with linear CLS. We uniformly use CLIP’s ViT-L/14 as the
backbone for all compared methods except those explicitly mentioned. Note that
linear CLS is commonly known to produce better performance than CBMs [24,
15], which is considered the ‘performance ceiling’ in our comparison.
Implementation details. All experiments were conducted on a 48GB RTX
A6000 GPU using PyTorch Lightning. We employ an SGD optimizer with an
initial learning rate of 5×10−4 with a linear decay to 1/100 of the initial value in
a prefixed number of epochs. The weight decay was set to 1×10−4. We train 300
epochs for HAM and DR, and only 100 epochs for BCCD. All experiments were
run five times and reported with the mean test accuracy from the last epoch.
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Doctor labeled concepts. A senior doctor manually reviewed the three med-
ical tasks and provided 10 concepts from each of the color, shape, size, and
texture aspects. This is used as a comparison to our prompt-generated concepts.
We found that the doctor-labeled concepts show close semantic similarity to the
GPT-generated concepts (k=10) with the mean cosine similarity between them
of 0.72, 0.66, and 0.70 for HAM, BCCD, and DTR respectively.
Result comparison. We show the experiment results in Table 1. The inter-
pretation examples are shown in Fig. 2. Our observations are the following. (1)
Regardless of the number of concepts k = K

n , our AdaCBM produces a compara-
ble classification performance to Linear CLS. In contrast, all other methods show
some degrees of performance deterioration, especially LaBo which has a larger
deterioration rate for smaller k. (2) The commonly used backbone fine-tuning
and the recent LoRA finetuning strategies perform worse than linear CLS. In
comparison, our AdaCBM shows a better performance without fine-tuning the
CLIP backbone. This also means AdaCBM can use pre-computed backbone fea-
tures, significantly reducing the training complexity. (3) Fig. 2 demonstrates
that our AdaCBM is constrained to use contributions from concepts selected for
each class, but LaBo, although implements a sparse concept-weight contribu-
tion promotion design, accepting large and positive concept contribution from
other classes. (4) Fig. 3 indicates that LaBo suffers from convergence issues
given it optimizes only the post-CBM parameters W and b. In comparison,
our AdaCBM efficiently meditates the domain gap given a comparatively larger
modeling capacity is introduced to the model.

irregularly shaped lesions

 no regression areas shown

 shows reddish-brown 
tones

exhibits light brown shades
black is a common color 

seen in images
displays dark brown tones

Melanoma
(Malign)

(a) HAM

LaBo

AdaCBM

no hemorrhages or 
exudates found

no lesion visible
 contain light pink 

microaneurysms

no microaneurysms or 
hard exudates

retinal nerve fiber layer 
shows no abnormalities

regular blood vessel patterns(b) DR

LaBo

AdaCBM

No DR
(Benign)

Confidence: 0.31 Logit: 0.49

Class Prob.: 15% Logit: 55.03 Class Prob.: 21% Logit: 50.18

Confidence: 0.49 Logit: 0.50

Fig. 2. A comparison of AdaCBM and LaBo generated interpretation with the top-3
contributed concepts where both models predict the correct class. The red and blue
colored bars show the concept contribution Wjisj and the cosine similarity x̂ · t̂.
Clinical-relevant phrases are highlighted in orange color. ✗ indicates a concept that
is not initially selected for the predicted class.

Ablation studies. Table 2-(1) concept generation. AdaCBM consistently
performs better than LaBo using either our GPT-4 prompt-generated or doctor-
labeled concepts, showing AdaCBM is robust to the concept generation method.
A qualitative comparison of the prompt-generated and doctor-labeled concepts
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Fig. 3. Training and validation accuracy comparison of LaBo (10K) and our AdaCBM
for k ∈ {10, 20, 50} concepts (distinguished by line styles). Due to significant training
length differences, we show AdaCBM in orange and LaBo (10k) in blue colored axis.

is in Fig. 1 in the supplementary material. Table 2-(2) Adapter module’s
position. The ablation of the adapter module’s placement (i.e., inserted after
the image encoder, text encoder, or both) confirms that changing text embed-
dings is not ideal because these image classification datasets do not contain text
to meaningfully update the text embedding module, and do so will lead to lower
classification performance. Table 2-(3) Adapter module’s structure. The
comparison shows the peak performance is at 2-layer for HAM and 1-layer for
BCCD and DR, which shows further addition of the adapter’s capacity (i.e.,
4 layers and beyond) overfit to the downstream task. Supplementary Table
1-Right concept selection. This ablation shows that AdaCBM is also robust
to the use of other concept selection methods (i.e., Submodular [23] from LaBo
or Label-free CBM’s [14]). Supplementary Table 2-(1) importance of geo-
metrically represented quantities. We test the importance of each quantity
by replacing them with 1 during the inference to inhibit their participation in
the model decision. The norm inhibitions show marginal performance change,
suggesting limited discriminative power. In contrast, cosine similarity inhibition
largely affects the performance. Hence we show both concept contribution and
cosine similarity in Fig. 2. Supplementary Table 2-(2) LLM variants. Our
AdaCBM shows robust performance across both GPT-3/4 generated concepts.
Supplementary Table 2-(3) Backbone variants. This ablation shows that
the representation power of a backbone ties to the CBM classification perfor-
mance, thus backbone fine-tuning should be cautiously carried out to not overfit
the downstream task.

4 Conclusion

Concept bottleneck models (CBMs) are interpretable deep learning classifica-
tion models that face performance degradation challenges. Here, we propose an
adaptive CBM model to address the performance issue. The core contribution of
our work is a fresh perspective on CBMs, examining their geometrical represen-
tation and treating CBMs as linear classification systems. This novel approach
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Table 2. Ablation study on (1) concept generation using our GPT-4 prompt generated
or doctor-labeled concepts, both with our concept utility selection method; (2) Adapter
module’s positioning; and (3) Adapter module’s structure. All results are with k = 10.

(1) Concept Generation (2) Adapter Module (3) # layers in

Dataset LaBo AdaCBM Placed After Adapter Module

Doctor Prompt Doctor Prompt Ima. Enc. Text Enc. Both 1 2 4

HAM 73.7 73.8 83.1 82.8 82.8 80.2 82.6 81.6 82.8 82.6

BCCD 54.7 59.6 74.3 74.1 74.1 70.8 71.7 74.1 72.6 73.1

DR 74.5 74.6 78.4 78.3 78.3 77.4 76.9 78.3 77.6 76.2

reveals an alternative way to increase model capacity, addressing the fine-tuning
requirements for the medical domain, while preserving the interpretability that
CBMs offer, an important issue that is currently overlooked by current CBM re-
search. Future work will look into improving the clinical and semantic accuracy
of the text concepts.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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