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Abstract. Single domain generalization (single-DG) for medical image
segmentation aims to learn a style-invariant representation, which can
be generalized to a variety unseen target domains, with the data from
a single source. However, due to the limitation of sample diversity in
the single source domain, the robustness of generalized features yielded
by existing methods is still unsatisfactory. In this paper, we introduce
a novel single-DG framework, namely Hallucinated Style Distillation
(HSD), to generate style-invariant features with consistent contents un-
der style variations within an expanded representation space. Specifically,
our HSD firstly enhances the style diversity of the single source domain
via hallucinating the samples with random channel statistics. Given that
out-of-distribution input impacts both the activation value statistics and
activated locations, we further propose a decorrelated representation ex-
pansion method to indirectly simulate the latter scenario by broadening
the representation space. Finally, a hallucinated cross-style distillation
paradigm is proposed to distill the style-invariant knowledge between
the original and style-hallucinated features, thereby promoting the ex-
traction of structural information. Extensive experiments on two stan-
dard domain generalized medical image segmentation datasets show the
superior performance of our HSD.

Keywords: Single Domain Generalization · Medical Image Segmenta-
tion · Style Invariance.

1 Introduction

Most existing medical image segmentation methods assume that the training
and testing images follow the independent and identical distribution. Unfortu-
nately, such an assumption is difficult to fulfill in realistic scenes. In practice,
medical images are often collected from different hospitals using different types
of scanners, which inevitably lead to the problem of domain gap. To this end,
lots of domain generalization methods [4,9,10,19,21,22], which adopt medical im-
ages from multiple source domains, have been recently proposed to tackle this
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challenge. However, due to the privacy issue of medical data, the access to mul-
tiple sources, i.e., the basic assumption for conventional domain generalization
methods, can be infeasible and unpractical.

In this paper, we focus on the more challenging yet practical scenario, i.e.,
single domain generalization (single-DG) [2,14,17,18], to deal with the domain
gap and increase the model generalization, where there is only a single source
domain available for model training. Existing single-DG methods either exploited
image augmentation to enrich the style diversity [6,21] or learned shape-invariant
features as a prior [11]. In contrast, our objective is to introduce random styles
that are integrated in the learning pipeline and constrain their similarity, which is
able to learn more generalized medical representation despite domain variation.
Specifically, we simultaneously expand the diversity of single source domain and
extract style-invariant feature representation, which is established based on two
key observations:

– Medical images from different domains contain the similar organ/pathological
information, i.e., the structural/semantic information.

– Medical images from different domains are usually acquired by different in-
struments under different imaging conditions. Thus, the style information,
such as color, image contrast and illumination, may dramatically vary.

We propose a novel Hallucinated Style Distillation (HSD) framework for sin-
gle domain generalized medical image segmentation. Specifically, to enrich the
style diversity of single domain, we first randomly sample styles from a large
style space S for hallucination. This process mainly changes the statistics of
feature maps. However, in practice, the consequence of out-of-distribution in-
puts not only includes the changes of activation values, but also the activated
locations. To address this, we propose a decorrelated representation expansion
(DRE) method which pushes the redundant channels to explore new activation
patterns. Then, a novel hallucinated cross-style distillation (HCD) scheme is
proposed for the extraction of style-invariant features. It is assumed that do-
main generalized features include consistent contents after style hallucination in
the expanded representation space. To learn such features, HCD incorporates
the knowledge distillation paradigm into the domain generalization perspective,
which distills the commonly-shared information between the original and style-
hallucinated features. Extensive experiments on two domain generalized fundus
and prostate benchmarks show its state-of-the-art performance.

2 Methodology

Given a number of unseen target domains D1, · · · , DK and a single source
domain DK+1, where domain Dk (k = 1, 2, · · · ,K+1) has a total number of Nk

samples, for single domain generalized medical image segmentation, the objective
is to learn a segmentation model Fθ : x → y using only the source domain
DK+1 = {(x(K+1)

n , y
(K+1)
n )}NK+1

n=1 , and the trained model Fθ is expected to show
good generalization on all the unseen target domains D1 = {(x(1)

n )}N1
n=1, · · · ,
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Fig. 1. Framework overview of the proposed Hallucinated Style Distillation (HSD)
learning scheme. After feature extraction with an image encoder, it consists of three key
components, namely, randomized style hallucination (RSH, in Sec. 2.1), decorrelated
representation expansion (DRE, in Sec. 2.2, presented in Eq. 4) and hallucinated cross-
style distillation (HCD, in Sec. 2.3, presented in Eq. 6).

DK = {(x(K)
n )}NK

n=1. Here, {(x(k)
n , y

(k)
n )}Nk

n=1 denotes the medical image and its
corresponding segmentation label. Our HSD aims to increase the style diversity
of DK+1 via style hallucination and decorrelated representation expansion, and
learn the style-invariant feature representation from the augmented DK+1.

2.1 Randomized Style Hallucination

The style hallucination technique is introduced to enrich the style diversity under
the setting of single-DG. Particularly, we adopt a randomized style hallucination
(RSH) scheme. Following the existing definition of styles, the channel-wise mean
and standard deviation of an image feature is used to represent the style [5]. Its
key idea is to firstly sample styles from a style space S ⊂ R[0,1]×[0,1] without the
aid of any prior knowledge, and then hallucinate intermediate features with the
sampled styles.

As shown in Fig. 1, given a MiT-b3 Transformer encoder, from shallow to
deep, its architecture can be separated into four feature blocks. For a certain
batch of medical images {x(K+1)

n }Bn=1 from the source domain DK+1, where
B denotes the batch size, each feature block outputs a feature representation
F

(K+1)
i,n ∈ RB×Ci×(Wi·Hi), where i = 1, 2, 3, 4, and Wi, Hi and Ci denote the

width, height and channel size of feature map, respectively. Then, the channel-
wise mean µ

(K+1)
i,n ∈ RB×Ci and standard deviation σ

(K+1)
i,n ∈ RB×Ci , reflecting
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the style of a medical image in domain DK+1, can be computed via:

µ
(K+1)
i,n =

1

HiWi
F

(K+1)
i,n ,σ

(K+1)
i,n =

√
1

HiWi

∑
h,w∈Hi,Wi

(F
(K+1)
i,n − µ

(K+1)
i,n )2. (1)

In single-DG, we can only access the style (µ
(K+1)
i ,σ

(K+1)
i )T of the single

source domain, which decreases the generalization of learnt features. Due to the
normalization layers within the backbone, the mean and standard deviation of
almost all channels are between 0 and 1. Therefore, we sample the channel-wise
mean and standard deviation randomly from S ⊂ R[0,1]×[0,1] to hallucinate the
style changes for generalized feature learning. The random sampling process can
be written as:

µ̃
(K+1)
i,n ∼ [0, 1], σ̃

(K+1)
i,n ∼ [0, 1]. (2)

Then, we scale (µ̃(K+1)
i,n , σ̃

(K+1)
i,n )T from the style space S to the feature space.

The style-hallucinated counterpart F̃(K+1)
i of the feature representation F

(K+1)
i

is generated by AdaIN [5], where the hallucinated style (in Eq. 2) is injected into
the original features via:

F̃
(K+1)
i,n = σ̃

(K+1)
i,n σ

(K+1)
i,n ·

F
(K+1)
i,n − µ

(K+1)
i,n

σ
(K+1)
i,n

+ µ̃
(K+1)
i,n µ

(K+1)
i,n . (3)

2.2 Decorrelated Representation Expansion

The practice of altering statistical values is a prevalent method employed to
emulate style variations. However, within the feature level, out-of-distribution
inputs not only cause changes in not only the activation values, but also the
activated locations. The former scenario can be produced through style halluci-
nation, but the latter is challenging to replicate due to the irregular shape and
location of intermediate feature activation. To address this, we propose an indi-
rect approach that compels the network to independently learn diverse features
at each encoding level, thereby capturing a wider range of activation patterns
and broadening the representation space.

A crucial prerequisite for this method is the inherent presence of redun-
dant features in the intermediate layers of deep neural networks. These features
capture similar information and activate at identical locations. By minimizing
this feature redundancy, the network can be encouraged to learn a variety of
representations. This can be accomplished by penalizing channel-wise feature
similarity, effectively decorrelating the feature channels. However, it is impor-
tant to note that while redundant channels activate at the same locations, the
distribution of activation values can vary. Consequently, we propose to penalize
the cross-channel similarity between original and hallucinated channels.

Particularly, we adopt the dual form of the contrastive learning paradigm,
and leverage the exponent form instead of the logarithm to highlight the impact
of them during the learning process. Features from all the four blocks of the
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image encoder are taken into account. Given the medical image x
(K+1)
n , and its

original and style-hallucinated feature maps F(K+1)
i,n ∈ R(Wi·Hi)×Ci and F̃

(K+1)
i,n ∈

R(Wi·Hi)×Ci , respectively, the proposed decorrelated representation expansion
loss LDRE is computed as:

LDRE =

4∑
i=1

(
1

Ci

Ci∑
j=1

(−exp(F (K+1)⊤
i,n,j · F̃ (K+1)

i,n,j /τ ′) +

Ci∑
k=1

exp(F (K+1)⊤
i,n,j · F̃ (K+1)

i,n,k /τ ′))),

(4)
where τ ′ is a temperature scaling parameter, and Fi,n,j denotes the feature map
from the jth channel in Fi,n. Note that all the feature maps have been resized into
the form of vector embedding. With this loss function, the redundant channels
are enforced to explore new patterns and the representation space is extended.

2.3 Hallucinated Cross-style Distillation

In this paper, we assume that domain generalized features include consistent
contents after style hallucination in the expanded representation space. To learn
such features, we add a knowledge distillation module at the end of encoder. As
shown in Fig. 1, the knowledge distillation module contains two mapping sub-
modules which extract the semantic content from the output of the last encoding
layer. Specifically, mapping submodules MO and MH project the original feature
F

(K+1)
4,n and hallucinated feature F̃

(K+1)
4,n into a low-dimensional latent space, re-

spectively. We denote the projected representations of F
(K+1)
4,n and F̃

(K+1)
4,n as

z
(K+1)
n ∈ R1×M and z̃

(K+1)
n ∈ R1×M . Here M refers to the dimension of pro-

jected embedding. Then this process can be written as:

z(K+1)
n = hMO

(GAP(F
(K+1)
4,n )), z̃(K+1)

n = hMH
(GAP(F̃

(K+1)
4,n )), (5)

where h(.) denote fully connected layers and GAP(·) is the global average pooling
(GAP) operation.

After acquiring the latent embeddings z
(K+1)
n and z̃

(K+1)
n , we adopt the

Kullback-Leibler (KL) divergence (DKL) as the learning objective (LHCD) for
domain-invariant feature distillation:

LHCD =

NK+1∑
n=1

DKL(z
(K+1)
n ||z̃(K+1)

n ). (6)

This objective requires the features to record more information through the
structural activation patterns instead of numerical activation values. Structural
patterns encompass the semantic content necessary for segmentation, while nu-
merical values are more susceptible to style variations. In the context of medi-
cal images, anatomical structure patterns remain relatively stable, whereas the
style can be significantly influenced by imaging conditions. Therefore, prioritiz-
ing structural information enhances out-of-distribution generalization.
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2.4 Optimization & Implementation Details

In the proposed HSD, the segmentation loss Lseg directly follows the default
setting of existing methods [19,22], i.e., a combination between the cross-entropy
loss and Dice loss. Then, our overall loss L can be computed as:

L = Lseg + λ · (LHCD + LDRE), (7)

where λ is a hyper-parameter to balance the loss functions, empirically setting
to be 0.01. Other hyper-parameter settings directly follow the prior work [22]
without any additional modification. Adam optimizer is used for training. On
the fundus dataset, the model was trained 400 epochs with an initial learning
rate 5× 10−4. On the prostate dataset, the model was trained 200 epochs with
an initial learning rate 3× 10−4.

3 Experiments

3.1 Datasets & Evaluation Metrics

Following prior single-DG medical image segmentation works [6,11], Dice coeffi-
cient (denoted as Dice, in percentage) and Hausdorff Distance (denoted as HD,
in pixels) are used for evaluation, which measure the errors in whole object and
surface, respectively. The mean and standard deviation of five independent runs
are reported. The detail of two benchmarks is provided as follows.
DG Fundus Image Segmentation Dataset consists of retinal images from
four different domains, namely, REFUGE (train) [13], REFUGE (val) [13], Dr-
ishtiGS [16] and RIM-ONE-r3 [3]. We denote them as Domain-A to Domain-D.
DG Prostate Image Segmentation Dataset consists of magnetic resonance
imaging (MRI) samples from six domains out of three prostate datasets, namely,
NCI-ISBI13 [1], I2CVB [7], and PROMISE12 [8]. For simplicity, we denote them
as Domain-A to Domain-F in the following text. All the images are resized
to 384×384 pixels in the axial plane, and the intensities are normalized to a
distribution with a zero mean and a unit standard deviation.

3.2 Comparison with State-of-the-Art

Experimental Settings. The experiments on the fundus dataset use Domain-
A as the singe source domain, and rest three as unseen target domains. The
experiments on the prostate dataset use Domain-A as the single source domain,
and the rest five as unseen target domains. For results on the fundus dataset,
the performance of optic disc and optic cup is averaged in the report [11]. The
proposed HSD is compared with 1) existing single domain generalized medi-
cal image segmentation methods, namely, JiGen [2], M-ADA [14], TTT [17],
TTST [6], BigAug [21], Tent [18], and TASD [11], with a residual U-Net [12] un-
der empirical risk minimization (ERM) as baseline, where the results are directly
cited from [11]; 2) two Vision Transformer (ViT) based segmentation models,
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Table 1. Performance comparison between the proposed HSD and existing methods
on the fundus dataset. The results of all pairs are significantly different at p= 0.01.

Unseen Domain B C D Avg. B C D Avg.

Dice Coefficient (Dice, mean±std) ↑ Hausdorff Distance (HD, mean±std) ↓
CNN based :
Baseline [12] 83.2±8.2 76.0±14.8 88.8±5.7 82.7 27.4±15.3 36.8±23.8 21.5±10.3 28.6
M-ADA [14] 85.9±9.3 77.4±13.7 90.6±4.8 84.6 22.7±11.2 30.4±17.1 13.8±7.5 22.3
TTT [17] 84.6±5.7 77.3±11.9 89.0±4.1 83.7 22.2±8.6 31.4±19.1 17.4±7.1 23.7
TTST [6] 85.5±9.0 76.5±13.4 91.0±4.7 84.3 22.0±10.2 33.6±19.3 12.1±8.1 22.6
Tent [18] 85.1±8.1 77.1±13.0 89.2±4.9 83.8 23.1±11.7 35.2±20.9 17.8±8.5 25.4
BigAug [21] 84.7±7.5 78.0±13.5 90.7±4.6 84.5 27.1±13.2 30.3±21.6 14.8±7.9 24.1
JiGen [2] 84.5±5.8 77.5±12.0 88.5±4.1 83.5 23.4±9.2 34.3±19.4 20.4±10.6 26.0
TASD [11] 87.6±8.0 78.5±12.6 91.3±4.2 85.8 19.8±9.5 29.4±18.0 12.3±6.2 20.5
HSD (Ours) 86.7±4.2 80.1±8.0 90.5±3.8 85.8 18.7±4.6 27.8±9.6 12.4±5.2 19.6
ViT based :
SegFormer [20] 84.7±2.4 86.3±3.9 80.1±3.0 83.7 27.7±5.5 33.8±4.2 38.2±4.8 33.2
FeedFormer [15] 87.6±2.1 86.0±3.7 80.5±1.4 84.7 23.6±7.5 30.2±7.3 25.2±4.5 26.4
HSD (Ours) 89.9±1.5 89.7±1.0 88.4±1.6 89.3 13.4±1.0 22.3±4.2 18.8±2.1 18.2

Table 2. Performance comparison between the proposed HSD and existing methods
on the prostate dataset. The results of all pairs are significantly different at p= 0.01.

Unseen Domain B C D E F Avg. B C D E F Avg.

Dice Coefficient (Dice, mean±std) ↑ Hausdorff Distance (HD, mean±std) ↓
CNN based:
Baseline [12] 83.8±5.3 73.3±11.1 72.6±7.0 65.5±29.5 78.7±7.8 74.8 40.9±34.9 59.0±29.4 59.5±21.2 61.2±42.6 37.2±20.9 51.6
JiGen [2] 83.2±6.1 70.8±14.7 74.0±7.9 71.5±10.2 80.3±6.2 75.9 29.3±23.2 64.5±23.3 50.4±25.9 50.6±26.0 24.3±10.7 43.8
M-ADA [14] 86.2±4.4 74.7±9.1 80.9±4.9 69.7±12.2 79.5±9.3 78.2 19.1±21.1 46.1±28.1 53.9±19.3 54.2±19.6 31.9±26.7 41.0
TTT [17] 83.5±5.9 73.1±17.5 75.3±7.8 67.5±11.1 81.5±5.9 76.2 26.4±22.1 55.4±22.3 54.8±25.5 53.0±22.2 21.8±19.2 42.3
TTST [6] 86.0±3.7 74.8±10.5 81.0±3.9 74.0±8.4 80.9±9.2 79.3 20.5±20.7 47.5±28.1 41.4±19.7 51.4±26.1 34.5±25.5 39.1
BigAug [21] 84.2±5.0 73.9±14.1 73.3±7.7 74.7±9.7 79.0±6.8 77.0 35.9±26.3 49.1±20.7 53.8±22.0 44.5±18.7 28.9±14.4 42.4
Tent [18] 84.5±4.7 74.2±13.9 76.4±8.1 67.1±10.1 80.1±9.6 76.5 27.2±24.7 50.3±22.7 45.7±23.5 49.6±30.9 29.8±20.1 40.5
TASD [11] 87.1±2.5 76.4±6.1 82.5±5.2 76.0±6.6 83.2±6.7 81.1 19.3±21.3 39.1±17.5 38.7±12.2 43.4±14.2 21.0±17.5 32.3
HSD (Ours) 85.7±3.2 78.9±5.6 84.5±3.0 78.6±5.1 82.3±4.1 82.0 10.1±5.6 22.8±9.2 16.3±6.5 21.6±8.9 16.2±7.0 17.4
ViT based:
SegFormer [20] 83.2±1.8 69.0±4.1 83.5±2.7 66.5±2.5 86.3±1.8 77.7 4.1±0.3 19.6±4.4 3.8±0.7 15.7±1.1 3.8±1.4 9.4
FeedFormer [15] 87.2±1.3 79.2±3.7 86.6±2.0 76.4±3.5 87.7±1.5 83.4 4.2±0.4 18.6±5.0 4.0±0.8 20.3±5.4 3.9±1.3 10.2
HSD (Ours) 88.7±2.2 85.0±2.5 87.7±1.9 87.2±1.7 90.3±2.1 87.8 3.3±0.9 14.5±4.1 3.7±0.9 10.8±2.0 3.1±1.3 7.1

namely, SegFormer [20] and FeedFormer [15], under ERM, where the results are
implemented by us under all default hyper-parameter settings.
Results on Fundus Dataset. Table 1 reports the performance of the pro-
posed HSD and existing methods. When embedded into the same convolutional
neural network (CNN) based segmentation model, the proposed HSD achieves a
competitive performance against TASD, and significantly outperforms the other
methods, yielding an average Dice of 85.8% and HD of 19.6 pixels. When embed-
ded into existing ViT based segmentation model, it achieves the state-of-the-art
performance with an average of Dice of 89.3% and HD of 18.2 pixels.
Results on Prostate Dataset. Table 2 reports the performance of the pro-
posed HSD and existing methods. When embedded into existing CNN segmen-
tation model, the proposed HSD outperforms all the compared methods by an
average of 0.9% improvement in Dice, respectively. When embedded into the
Vision Transformer segmentation model, it achieves the state-of-the-art perfor-
mance, with an average Dice of 87.8%. Notably, the standard deviation of the
proposed HSD is much smaller than existing methods, indicating its robustness.
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Table 3. Ablation study on each component in the proposed HSD. The results of all
pairs are significantly different at p= 0.01.

Component B C D Avg. B C D Avg.

RSH HCD DRE Dice Coefficient (Dice, mean±std) ↑ Hausdorff Distance (HD, mean±std) ↓
87.6±2.1 86.0±3.7 80.5±1.4 84.7 23.6±7.5 30.2±7.3 25.2±4.5 26.4

✓ 88.0±2.3 86.7±1.9 82.6±1.5 85.8 21.2±6.8 28.3±5.9 23.1±2.8 24.2
✓ ✓ 88.8±1.3 88.1±1.4 86.0±1.7 87.6 16.0±3.2 27.6±3.5 21.9±2.0 21.8
✓ ✓ ✓ 89.9±1.5 89.7±1.0 88.4±1.6 89.3 13.4±1.0 22.3±4.2 18.8±2.1 18.2

TTT TTST TENT BigAug TASD OursM-ADA

Fig. 2. Exemplar domain generalized segmentation results of the proposed method and
the state-of-the-art methods. The first and second rows are results from the fundus
benchmark. The third and forth rows are results from the prostate benchmark. Ideally,
the green and blue segmentation predictions should coincide with the red ground truth.

3.3 Ablation Studies

Table 3 studies the impact of each component in the proposed HSD, namely,
RSH, HCD and DRE. When none of these components are available, the pro-
posed HSD degrades into a FeedFormer baseline. A naive use of RSH leads to
an average improvement of 1.1% in Dice and 2.2 pixels in HD. The proposed
HCD and DRE both lead to a clear performance gain, by 1.8% and 1.7% in
Dice, respectively, while the combination of HCD and DRE can achieve further
improvement.

3.4 Visualization of Segmentation Results

Fig. 2 shows visual segmentation results of the proposed HSD and existing state-
of-the-art methods on the fundus dataset and prostate dataset. The proposed
HSD shows better prediction with smooth boundary on unseen target domains.
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4 Conclusion

In this paper, we focused on the most challenging but practical case for domain
generalized medical image segmentation, when there is only a single source do-
main available. We proposed a novel Hallucinated Style Distillation (HSD) learn-
ing scheme, which aims to extract features with consistent contents under style
variations within an expanded representation space. Extensive experiments on
two standard domain generalized medical image segmentation datasets showed
its state-of-the-art performance. Notably, the proposed HSD is applicable to both
CNN and ViT based segmentation models.
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