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Abstract. Tissue deformation poses a key challenge for accurate surgi-
cal scene reconstruction. Despite yielding high reconstruction quality, ex-
isting methods suffer from slow rendering speeds and long training times,
limiting their intraoperative applicability. Motivated by recent progress
in 3D Gaussian Splatting, an emerging technology in real-time 3D ren-
dering, this work presents a novel fast reconstruction framework, termed
Deform3DGS, for deformable tissues during endoscopic surgery. Specif-
ically, we introduce 3D GS into surgical scenes by integrating a point
cloud initialization to improve reconstruction. Furthermore, we propose
a novel flexible deformation modeling scheme (FDM) to learn tissue de-
formation dynamics at the level of individual Gaussians. Our FDM can
model the surface deformation with efficient representations, allowing
for real-time rendering performance. More importantly, FDM signifi-
cantly accelerates surgical scene reconstruction, demonstrating consid-
erable clinical values, particularly in intraoperative settings where time
efficiency is crucial. Experiments on DaVinci robotic surgery videos in-
dicate the efficacy of our approach, showcasing superior reconstruction
fidelity PSNR: (37.90) and rendering speed (338.8 FPS) while substan-
tially reducing training time to only 1 minute/scene. Our code is available
at https://github.com/jinlab-imvr/Deform3DGS.

Keywords: Fast 3D reconstructon · Surgical scene reconstruction · 3D
Gaussian Splatting · Deformable scene.

1 Introduction

Three-dimensional (3D) reconstruction of surgical scenes has great potential to
facilitate many downstream applications including intraoperative navigation [14],
and visualization enhancement [15,11]. Besides, a high-quality and dynamic 3D
scene model has demonstrated potential benefits to surgical training through
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shortening learning curves [1] and remote surgical proctoring [19] by allowing
immersive observation of surgical scenes.

Conventional reconstruction methods suffer from a redundant workflow in-
cluding depth estimation, surface reconstruction, and texture mapping [16]. To
enhance the compactness and efficiency, many studies introduce Neural Radiance
Field (NeRF) [13], an implicit 3D representation using tiny Multi-Layer Percep-
trons (MLPs), to model geometric details and appearance from the captured
video. This implicit representation can directly render the photo-realistic novel
views, simplifying the bulky conventional workflow. Works [17,22] successfully
adapt NeRF into endoscopic scene reconstruction, leading to promising perfor-
mance in rendering quality and geometry fidelity. However, this line of work
suffers from a long training time (hours) and low rendering speed, which sig-
nificantly impedes their intraoperative applicability. LerPlane [20] encodes the
spatial and temporal information using decomposed 4D feature planes to accel-
erate the reconstruction. This approach inherently models the deformation and
directly outputs rendering parameters for deformed tissues, which heavily rely
on complex computations performed on feature planes and MLPs, leading to a
compromised acceleration.

With the current progress in computer graphics, Gaussian Splatting (GS) [5]
emerged as a ground-breaking 3D representation. Driven by its superior per-
formance, many efforts [21,8,6] have been made to adapt this technique to dy-
namic scene reconstruction through a deformation model to represent motions.
4DGS [18] is one of the pilot studies presenting one efficient solution where de-
composed feature planes similar to [2] are used to model time-dependent defor-
mations. Despite the compact feature encoding, 4DGS retains time-consuming
feature plane interpolation and decoding with MLPs, which limits the accel-
eration and intraoperative applicability. Also, 4DGS inadequately utilizes geo-
metric priors, leading to a highly sparse point initialization and a longer time
for geometry reconstruction. Therefore, integrating GS into the surgical scene
reconstruction framework is still challenging. In addition, although concurrent
works extending GS to endoscopic settings show excellent performance in geom-
etry refinement [23], model lightweight [10], and sparse-view synthesis [7], fast
reconstruction of deformable surgical scenes is understudied, which inspires our
work toward efficiently adapting GS to intraoperative scenes.

In this paper, we develop a highly efficient framework for deformable surgi-
cal scene reconstruction, named Deform3DGS, by introducing the GS technique
into surgical scenario with a motion-aware point fusion (MAPF) to initialize the
Gaussian point cloud densely. Besides, we propose a novel flexible deformation
modeling scheme (FDM) for efficiently representing tissue deformations. FDM
models the tissue deformations via an efficient linear combination regression,
where learnable basis functions are leveraged to improve both the representation
capability and efficiency. Finally, we evaluate our method on EndoNeRF [17] and
StereoMIS [3] datasets collected from Da Vinci robotic surgery videos. Experi-
ments indicate the efficacy of our approach, demonstrating superior reconstruc-
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Fig. 1. Illustration of our fast deformable tissue reconstruction framework, De-
form3DGS, composed of (a) Point cloud initialization, (b) Flexible Deformation Mod-
eling, and (c) 3D Gaussian Splatting.

tion quality (PSNR: 37.90) and rendering speed (338.8 FPS) while substantially
reducing training time to around only 1 minute per scene.

2 Method

Pipeline. As shown in Fig. 1, during the training phase, our framework ini-
tializes the endoscopic scene with a Gaussian point cloud G using the MAPF
scheme (Sec. 2.3). The following is the FDM that models deformed tissues by
learning the time-dependent changes for each Gaussian point g (Sec. 2.2). Next,
the rendering (Sec. 2.1) is performed to obtain the colored image and depth
of the deformed Gaussian point cloud given the camera viewpoint. Finally, the
rendered image and depth are supervised by corresponding ground-truth (GT)
image and stereo depth to optimize the framework (Sec.2.5). During rendering
(testing), given a query time and camera viewpoint, FDM deforms the learned
Gaussian point cloud G and the view of the deformed Gaussians is rendered.
Problem Setting. Our task is to train a deformable tissue reconstruction model
Ψ from an endoscopic surgery video. Given the camera intrinsic matrix K and
extrinsic matrix T i recording the camera viewpoint information at the i-th
frame, a desired reconstruction model Ψ∗ is supposed to render the i-th view Ii

at timestamp ti as Ii = Ψ∗(T i, ti;K).
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2.1 Preliminaries of Gaussian Splatting

3D Gaussian Splatting [5] is a static 3D scene representation that models scenes
with the form of a 3D Gaussian point cloud in the world coordinate frame.
Each Gaussian point contains learnable attributes: position µ ∈ R3, rotation
r ∈ R4, scale s ∈ R3, opacity α and spherical harmonic (sh) coefficients. Given
an arbitrary 3D coordinate x ∈ R3 in world frame, the spatial impact of a 3D
Gaussian point on x is defined by a Gaussian distribution as following:

f(x; µ, Σ )= exp

(
−1

2
(x − µ)

T
Σ−1(x − µ)

)
(1)

Σ = RSSTRT, (2)

where R is the rotation matrix calculated from r, and S is the diagonal matrix of
s. Next, the 3D Gaussian point is projected to the 2D image plane for rendering.
The projected 2D Gaussian with the position µ2D and covariance matrix Σ2D

can be analytically computed in pixel coordinate frame given the camera intrinsic
and extrinsic parameters (K and T ). Finally, an α-blending [5] is performed to
render the colored images Ĉ and corresponding depth D̂.

2.2 Flexible Deformation Modeling

MLP-based implicit deformation fields represented by Hexplane [2] incur signif-
icant computational overhead to training and cannot meet the stringent real-
time processing demands of surgical video analytics. To mitigate it, [9] proposed
a computationally efficient explicit representation of the deformation field, in
which Fourier and polynomial basis functions b(t) parameterized by time are em-
ployed to learn the per-Gaussian motion curve. Each Gaussian is endowed with
a set of learnable weights ω that linearly combine the basis functions to gener-
ate the motion curve as ψ(t;ω) =

∑B
j=1 ωjbj(t). Despite the adaptability of each

Gaussian to deformation through weight adjustments, the temporal deformation
is confined to canonical motion, leading to inconsistent deformation representa-
tions for different queried times. The model may be compelled to forgo certain
specific movements to ensure a coherent overall trajectory, which is detrimental
in scenes with intricate and nuanced deformations, such as instrument-tissue
interactions. Furthermore, the deformation learned at a particular timestamp
globally influences the entire trajectory, resulting in a sub-optimal local defor-
mation representation at different queried times.

To overcome these limitations, we introduce a novel flexible deformation mod-
eling scheme (FDM) which offers flexibility and adaptability to basis functions
using learnable parameters. We adopt the Gaussian function with learnable cen-
ter θ and variance σ.

b̃(t; θ, σ) = exp

(
− 1

2σ2
(t− θ)2

)
, (3)
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For each Gaussian g in the point cloud, position µ and rotation r are naturally
related to tissue motions, and scale s keeps varying since tissues are prone to
elastic deformations during instrument intervention. Thus, an additional set of
learnable parameters Θµ,Θr,Θs are introduced for each Gaussian to describe
temporal deformations in their position, rotation, and scale respectively, see
Fig. 1. Taking the positional change in x direction as an example, deformation
curve can be expressed by a set of parameters Θµ,x = {ωµ,x,θµ,x,σµ,x} as:

ψµ,x(t;Θµ,x) =
B∑

j=1

ωµ,x
j b̃(t; θµ,xj , σµ,x

j ), (4)

Due to the locally valuable nature of Gaussian functions, our model ensures
that deformations at adjacent moments remain continuous, while those across
large time intervals are almost decoupled. Besides, integrating with learnable
parameters, this approach yields a deformation model that is not only computa-
tionally efficient but also capable of capturing intricate deformation dynamics.

2.3 Point Cloud Initialization

To further boost the reconstruction performance and stabilize the training, we
introduce a Gaussian point cloud initialization before the deformation modeling.
Specifically, we first employ the camera model and intrinsic matrix to extract
the 3D tissue point clouds for each frame as:

P i = K−1Di(Ii ⊙M i), (5)

where P i and Ii respectively denote 3D point cloud and 2D pixel coordinates
from the i-th frame, Di, M i denote the i-th depth map and valid foreground (i.e.,
tissue) mask, respectively, K means the intrinsic matrix, ⊙ means the element-
wise multiplication. By default, the first frame is selected to initiate the Gaussian
point cloud as the canonical state, i.e., P c = P 0. However, with the presence of
tool occlusions in the colored image, some pixels in I0 are filtered out by M0,
resulting in voids and local sparsity on the initialized point cloud. This unevenly
distributed initialization consumes more time densifying the point cloud and
leads to a sub-optimal efficiency. Holding an assumption that dense Gaussian
point distribution facilitates reconstruction on intensively deformed regions of
the surgical scene, we develop a Motion-Aware Point Fusion (MAPF) scheme to
selectively fuse points exhibiting intensive motions. Specifically, a motion-aware
occlusion mask F is computed by combining occluded regions and pixels with
large color differences from a pixel-wise-averaged image as following:

F = I( |C0 −
∑N

j Cj/N | > τ) ∪ (1−M0), (6)

where I(·) refers to the indicator function, Ci represents the colored image of
the i-frame, N is the total number of frames, and τ is the threshold determining
pixels with significant motions. F masks regions with large motions and local
sparsity of the initialized Gaussian points P c (i.e., P 0). Finally, 3D points of P i

with 2D projected pixels in mask F will be fused with the P c to initialize the
canonical state as shown in Fig. 1.
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2.4 Optimization

Our proposed framework jointly optimizes the canonical Gaussians Gc and the
deformation model given by Θ. Given the tissue mask M , we train our de-
formable tissue reconstruction framework by supervising the rendered images
and depths by ground-truth colored images and stereo depth maps as following:

LC = ||M ⊙ (Ĉ −C)||, LD = ||M ⊙ (D̂
−1

−D−1)||, (7)

where the Ĉ, D̂, C, and D denote the rendered image, rendered depth, GT
image, and stereo depth, respectively. The overall training loss is summarized
L = LC + LD.

3 Experiment

3.1 Experiment Setting

Datasets and Evaluation. We evaluate the proposed method and compare it
with existing works on two datasets: 1) EndoNeRF dataset [17] is a collection
of stereo endoscopic videos including 6 clips extracted from Da Vinci robotic
prostatectomy data. Each clip is captured from a single camera viewpoint with
complex surgical instrument occlusion and tissue deformations. 2) StereoMIS
dataset [3] is a stereo endoscopic video dataset captured from in-vivo porcine
subjects containing diverse anatomical structures and challenging scenes with
large tissue deformations. Specifically, we use all 6 scenes of EndoNeRF and
select 3 clips from video P2_7 and P3 in StereoMIS datasets with more diverse
anatomical structures compared to EndoNeRF dataset. Each selected clip lasts
for 4 ∼ 5s with 30 fps. Following [22], we split frames of each scene into training
and testing sets with a ratio of 7:1. We use PSNR, SSIM, and LPIPS to evaluate
the reconstruction performance. Also, training time and rendering speed are
calculated to evaluate the efficiency.
Implementation Details. For each scene, we normalize the video duration into
[0, 1] and empirically apply 17 learnable Gaussian basis functions to compose
FDM. The training lasts for 3000 iterations, with an initial learning rate of
1.6 × 10−3. To stabilize the training, we freeze the densification on Gaussian
points number at the initial 600 iterations. All the experiments are based on the
PyTorch framework [4] and conducted with a single NVIDIA RTX A5000 GPU.

3.2 Comparison with State-of-the-art Methods

We evaluate our proposed framework by comparing its performance with En-
doNeRF [17] and two existing SOTAs on fast reconstruction: LerPlane [20], and
EndoGaussian[12]. EndoGaussian is a concurrent work using GS to accelerate
the endoscopic reconstruction. As listed in Table 1, despite the effectiveness of re-
constructing deformable tissues, EndoNeRF takes a long training time (hours) to
reconstruct a scene in seconds, which compromises their intraoperative usability.
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Dataset Method PSNR↑ SSIM(%)↑ LPIPS↓ Time (sec)↓ Speed (fps)↑

EndoNeRF

EndoNeRF 35.55 93.02 0.09 ∼21600 0.03
LerPlane 36.56 94.36 0.07 ∼600 1.45

EndoGaussian 37.66 95.89 0.06 138 128.13
Ours 37.90 95.84 0.06 64 338.80

StereoMIS

EndoNeRF 28.86 74.15 0.27 ∼21600 0.03
LerPlane 29.46 77.73 0.20 ∼600 1.52

EndoGaussian 30.25 82.75 0.21 151 134.50
Ours 30.48 82.74 0.21 66 330.37

Table 1. Quantitative evaluation of our proposed framework against existing methods
on endoscopic scene reconstruction. ‘Time’ and ‘Speed’ denote the training time and
rendering speed (fps), respectively. The optimal and suboptimal results are shown in
bold and underlined respectively.

Method PSNR↑ SSIM(%)↑ Time(min)↓
LerPlane 22.75 82.13 ∼1
EndoGaussian 35.81 94.67 ∼1
Ours 37.90 95.84 ∼1

Table 2. Quantitative comparison
with SOTAs given the limited training
time around 1 min.

Method PSNR↑ SSIM(%)↑ Time(sec) ↓
Ours-HexPlane 37.13 95.51 108

Ours-PFS 37.08 95.29 60
w/o MAPF 37.47 95.62 61

Ours 37.90 95.84 64

Table 3. Quantitative analysis of the key com-
ponents on EndoNeRF dataset. ‘Time’ denotes
the training time.

As a comparison, the fast reconstruction method, LerPlane, effectively acceler-
ates the training phase to the minute level and leads to a superior reconstruction
quality. Our framework yields noticeable performance gains over LerPlane across
all evaluation metrics on reconstruction quality, while substantially improving
training efficiency by 10 times to around 1 minute. Furthermore, we compare
our method against EndoGaussian [12]. Similar to [18], this method relies on
decomposed feature planes to model dynamic Gaussian Splatting, presenting re-
markable performance against NeRF-based methods and reaching comparable
reconstruction quality to our framework. However, benefitting from the highly
efficient FDM, our method leads to over 2× acceleration in both training (138
sec → 64 sec) and rendering (128 fps → 338 fps). Note that our measured
training and rendering speeds for EndoGaussian mismatch with the reported
values in [12] due to different hardware used.

Despite the comparable reconstruction quality, as shown in Table 2, our pro-
posed method achieves significantly superior performance within a limited train-
ing time, which demonstrates the superiority in intraoperative scenarios.

We also visualize several rendered scenes as shown in Fig .2 for better quali-
tative evaluation. It can be observed that our method has an enhanced capability
of preserving the appearance details and modeling complex tissue motions. Ad-
ditionally, rendered views given by EndoGaussian indicate comparable rendering
quality to ours without a visually perceivable difference. According to these re-
sults, our proposed method achieves state-of-the-art (SOTA) performance on en-
doscopic scene reconstruction, especially its outstanding progress in fast training
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Fig. 2. Visualization of the 3D reconstruction results.

and real-time-level rendering, which indicates great clinical values in intraoper-
ative applications.

3.3 Quantitative Evaluation of Key Components

We first investigate the effectiveness of the proposed FDM by comparing it with
existing deformation modeling techniques on the EndoNeRF dataset. With the
identical workflow shown in Fig. 1, we replace the FDM with other modeling
methods including a combination of Fourier and Polynomial series (Ours-FPS),
and a HexPlane-based decomposed feature plane [2] following [18] denoted as
Ours-HexPlane. As illustrated in Table 3, despite the acceleration, Ours-FPS
shows limited capability of representing complex deformations. On the other
hand, using HexPlane to encode spatial and temporal information significantly
enhances the representative capability, however, leading to a relatively longer
training time. Our proposed FDM achieves the best deformation representing
performance without impairing time efficiency. Furthermore, ‘w/o MAPF’ refers
to initializing the Gaussian points with only the first frame point cloud, which
exhibits a performance drop and thus demonstrates the important role of the
proposed MAPF scheme.

4 Conclusion

In this paper, we work toward intraoperative surgical scene reconstruction by
proposing a fast and accurate deformable scene reconstruction framework. With
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the utilization of Gaussian Splatting, our framework can achieve high-quality
rendering at a real-time level. To further accelerate the tissue motion model-
ing, we introduce an efficient flexible deformation modeling scheme composed of
learnable Gaussian basis functions to maintain a strong motion-representative
capability. Besides, combined with a motion-aware point fusion scheme for ini-
tialization, our framework leads to a SOTA reconstruction quality while signifi-
cantly minimizing the training time to only 1 min/scene, showing the possibility
of reconstructing longer sequences with more challenging surgical scenes. There-
fore, we believe that our work achieves significant progress in bridging the gap
between high-quality rendering and intraoperative applications.
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