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Abstract. Fluorescence microscopy is an indispensable tool for biolog-
ical discovery but image quality is constrained by desired spatial and
temporal resolution, sample sensitivity, and other factors. Computational
denoising methods can bypass imaging constraints and improve signal-to-
noise ratio in images. However, current state of the art methods are com-
monly trained in a supervised manner, requiring paired noisy and clean
images, limiting their application across diverse datasets. An alternative
class of denoising models can be trained in a self-supervised manner,
assuming independent noise across samples but are unable to generalize
from available unpaired clean images. A method that can be trained with-
out paired data and can use information from available unpaired high-
quality images would address both weaknesses. Here, we present Baikal,
a first attempt to formulate such a framework using Denoising Diffusion
Probabilistic Models (DDPM) for fluorescence microscopy images. We
first train a DDPM backbone in an unconditional manner to learn gen-
erative priors over complex morphologies in microscopy images. We then
apply various conditioning strategies to sample from the trained model
and propose an optimal strategy to denoise the desired image. Exten-
sive quantitative comparisons demonstrate better performance of Baikal
over state of the art self-supervised methods across multiple datasets. We
highlight the advantage of generative priors learnt by DDPMs in denois-
ing complex Flywing morphologies where other methods fail. Overall,
our DDPM based denoising framework presents a new class of denoising
methods for fluorescence microscopy datasets that achieve good perfor-
mance without collection of paired high-quality images.
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1 Introduction

Fluorescence microscopy is a widely used technique to study biological phe-
nomena. Advancements in optical techniques [5] and development of better flu-
orescent sensors [26] have pushed the limits of image collection. However de-
sired imaging conditions like spatio-temporal resolution, duration for time-lapse
imaging, phototoxicity and photobleaching for sensitive samples etc. constrain
imaging parameters such as laser power, exposure time and frame-rate leading
to acquisition of noisy images [19,20].

Several computational denoising methods have been developed for both sin-
gle images [1,10,12,23] and videos [4,11,15] that can bypass imaging constraints
and generate clean images. These methods fall into one of the two categories:
1) paired-denoising methods like CARE [23] offer best denoising performance,
however these methods require large paired datasets of noisy and high qual-
ity images for training that are extremely time-consuming to collect. 2) self-
supervised denoising methods such as Noise2Noise (N2N) [12] and Noise2Void
(N2V) [10] can be trained using only noisy images. However, these methods as-
sume pixel-wise independent noise, achieving worse performance in situations
where spatially correlated (structured) noise is present as shown in [3]. To ac-
count for structured noise, modifications of self-supervised denoising methods
have been proposed such as StructN2V [3], SSID [13] etc. Here, we consider a
common scenario where an unpaired dataset of clean images is available but not
paired clean data. Unpaired clean images may provide important morphological
priors to denoising methods in extreme noise scenarios. Previous methods are
not designed to take advantage of such unpaired images.

Our method, which we termed Baikal, leverages a Denoising Diffusion Prob-
abilistic Model (DDPM) [8] for learning generative priors from unpaired clean
images. Application of DDPMs have been shown for fluorescence microscopy
[6,14,18] but not for denoising task. Additionally, DDPMs have been applied for
denoising data from modalities such as PET, MRI, CT [7, 16, 21, 24]. However
fluorescence microscopy data generation and noise characteristics differ signif-
icantly from these modalities [2]. Thus it is not clear whether DDPMs would
work for denoising fluorescence microscopy images. We explore this question in
this work by leveraging DDPM in a two step framework. First a diffusion model
is trained only on clean images. Next, conditional sampling is used to generate
clean predictions of the noisy images. In this work, we empirically evaluate sev-
eral conditional samplers on multiple open-source datasets [23]. The proposed
framework has several advantages over previous methods - 1) it does not require
paired data as paired-denoising methods for training, 2) the DDPM backbone
learns important morphological priors from unpaired clean images to guide de-
noising, 3) it is widely applicable across datasets with varying noise properties.
Our contributions are as follows,

– We demonstrate the first application of Diffusion Models for denoising fluo-
rescence microscopy images.
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Fig. 1. Overview of the proposed method. Training stage - a DDPM backbone is
trained using only unpaired high quality images. Inference Stage - image is denoised
by sampling from the trained backbone. Three strategies are explored to guide the
sampling process namely Forward-Backward, Mixing and Repaint.

– We systematically evaluate the applicability of several conditional sampling
strategies designed for inpainting tasks for denoising and suggest an optimal
strategy for fluorescence microscopy datasets.

– We evaluate if initial denoising using self-supervised methods such as N2V
can better guide conditional samplers.

2 Methods

Our goal is to generate a clean image x ∈ X given a noisy fluorescence image y ∈
Y. Self-supervised methods only use Y to generate clean images. Paired-denoising
methods use paired clean and noisy acquisitions {X ,Y} to generate clean images.
Here, we propose a two step method for denoising flourescence microscopy images
when unpaired clean and noisy images are available (Fig. 1). First a generative
backbone is trained to model clean data. Next, adapting several samplers from
the inpainting literature [17] we evaluate them on three datasets of varying
morphological properties. In addition, if self-supervised predictions are available
for noisy images, we evaluate their utility on the performance of samplers.

2.1 Generative backbone on clean images

Our generative backbone is trained as a DDPM [8] on unpaired clean images X .
DDPMs are generative latent variable models that learn a model distribution
pθ(x) that approximate data distribution q(x). The forward diffusion process
applies Gaussian noise to the images until they become indistinguishable from
random Gaussian noise for T steps x0 → x1 → x2, ...,xT . Variance schedule is
given by β1, ..., βT .

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)



4 Authors Suppressed Due to Excessive Length

The reverse process goes in the opposite direction to generate images starting
from random noise xT → xT−1, ...,x0 where xT ∼ N (0, I). Reverse sampling
distribution to sample xt−1 conditioned on xt is given by

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

Here µθ denotes the neural network with parameters θ trained to denoise xt

at every time step t. Variances of the reverse process are also learned unless
otherwise specified.

2.2 Conditional samplers as denoisers

Once the generative backbone is trained on clean images, we denoise an image
y0 ∈ Y by generating a (predicted) clean image x0 conditioned on y0. We
adapt conditional sampling methods proposed in the inpainting literature [17]
and evaluate their performance in the context of denoising fluorescence images.
All conditional samplers in this work first forward diffuse the noisy image y0 to
arbitrary time step t utilizing the closed form expression for forward process as
follows,

q(yt|y0) = N (yt;
√
ᾱty0, (1− ᾱtI) (3)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. To evaluate N2V predictions for their
utility in our proposed denoising method, we replace y0 with yN2V

0 and its corre-
sponding forward diffused as yN2V

t . Once noisy images y0 are forward diffused,
different conditional sampling methods differ in the inputs to µθ(xt, t).

Forward-Backward (FB): Here, first the noisy image y0 is forward diffused
to t′ steps such that only the underlying signal is preserved. Next, the reverse
process is run by setting xt′ = yt′ (only at t = t′) to generate denoised x0 from
noisy y0. The reverse step is given as follows,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

Intuitively, since the DDPM is trained only on clean images, at the end of the
reverse process, our hope is that the generated sample will approximate the
denoised image (i.e. x0 ≈ x). However one disadvantage of this sampler is that
the original signal destroyed during forward diffusion is lost forever and the
network might not be able to recover all the components of the clean image when
running the reverse process. To run on N2V predictions, we replace xt′ = yN2V

t′ .

Mixing: In forward-backward sampler the generation process at each time step
is independent of the noisy image y0 (except for t = t′). Additionally, the infor-
mation once destroyed is not recoverable in forward-backward denoising. Thus to
feed the network all the information that was present in the original noisy image
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at every time step and to further guide the generation process, we compute the
weighted average of the reverse sample xt and the forward diffused noisy image
yt and treat them as inputs to µθ.

µθ = µθ((1− wt)xt + wtyt, t) (5)

Since higher weights for the noisy image in the later stages of the generative
process could yield noisy generations, we monotonically decrease the weights wt

during the reverse process. We experimented with several mixing weight sched-
ules (constant, linear, cosine and exponential). To run on N2V predictions, we
replace yt = yN2V

t when taking the weighted combination, but use forward
noised y0 as yt only for t = t′. A disadvantage of this sampler is that it re-
places denoised pixels by noisy pixels reverting denoising, as we re-introduce
noisy image at every time step by taking weighted combination.

Repaint: Although weighted combinations of yt and DDPM outputs at each
time step xt guide the generation process, some of the denoised pixels in xt are
replaced with noisy pixels, thus reverting the denoising process. Additionally,
mixing once at each time step may not be enough to ensure semantic consistency.
This is because the mixing input yt at each time step is independent of the
DDPM output xt at that time step. Thus, although the DDPM tries to predict
the denoised output at the next time step using both yt and xt, it may not be
able to correct any inconsistency in the previous step. Thus, to ensure semantic
consistency, similar to Repaint [17], we repeat the reverse step multiple times.
Since µθ is trained as a denoiser, we use it for maintaining semantic consistency.
Concretely, starting at a time step t, we run the the generation process for U
steps, while mixing xt and yt at each time step, to generate xt−U . Next, xt−U

is taken as input to the time step t and generation process is repeated R times
(See Algorithm 1 in Supplementary). Our strategy is different from the original
Repaint, in that, empirically we found repainting every step yielded worse results
compared to repainting in U intervals. Additionally, we stop mixing in the later
stages of generation to avoid replacing denoised pixels by noisy pixels resulting
in better results as shown in Fig.2(right).

3 Experiments

3.1 Dataset & Training

We evaluate our framework on three open source fluorescence microscopy datasets
[23] with distinct morphological labelling to highlight the generalizability of
Baikal. These include - 1) nuclei labeled embryos of Tribolium castaneum, 2)
nuclei labeled embryos of the planarian S. mediterranea and 3) boundary la-
belled eplithelia of the fruit fly Drosophila Melanogaster. The datasets provide
noisy and high quality images that were acquired at low and high laser pow-
ers, respectively. The test sets provided in the datasets were not normalized as
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Datasets Planaria Tribolium Flywing

Methods SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR

Noise 0.153 0.137 8.95 0.160 0.150 9.11 0.121 0.587 2.38
N2V [10] 0.296 0.055 15.58 0.208 0.074 11.55 0.174 0.576 2.46
SSID [13] 0.27 0.073 15.76 0.257 0.06 14.91 0.221 0.18 7.61
Forward Backward - Noise 0.339 0.049 16.71 0.260 0.052 14.71 0.260 0.209 6.94
Forward Backward - N2V 0.327 0.055 16.78 0.199 0.065 12.29 0.102 0.572 2.49
Mixing - Noise 0.317 0.056 14.25 0.229 0.058 13.68 0.241 0.220 6.69
Mixing - N2V 0.333 0.055 16.74 0.237 0.054 13.81 0.175 0.393 4.12
Repaint - Noise 0.386 0.050 17.55 0.458 0.028 19.47 0.290 0.190 7.38
Repaint - N2V 0.328 0.057 16.85 0.396 0.029 18.20 0.110 0.625 2.10

CARE∗ [23] 0.488 0.034 19.08 0.638 0.019 22.69 0.175 0.221 7.25

Table 1. SSIM(↑), MSE(↓) and PSNR(↑) metrics on test sets. ∗CARE is trained using
paired dataset.

Fig. 2. Hyperparameter effects on SSIM accuracy evaluated on Planaria dataset. (Left
panel) Starting time step. (Center panel) Mixing stop time step and mixing weights
schedule. (Right panel) Mixing stop time step and number of repaint repeats.

the train set. Thus, for fair evaluation, we split the provided train sets in these
datasets into train, eval and test sets in the ratio 80 : 10 : 10. We train diffusion
backbone based on DifFace [25] codebase* using only 2D clean images from the
train split. Planaria and Tribolium datasets provide noisy and clean 3D volumes
whereas the Drosophila dataset consisted of only 2D projected clean images. In
each case we train separate diffusion backbones by treating each 2D z-plane as
individual data points. To quantify accuracy, we generate denoised predictions
for images in the test split and compare them with the clean images in the test
split. We provide all qualitative and quantitative results on test splits.

3.2 Quantitative results

We compare Baikal against state of the art methods for denoising fluorescence
microscopy images. These include self-supervised methods such as N2V [10] and
SpatiallyAdaptiveSSID(SSID) as well as paired-denoising method CARE [23].
We train both methods using author provided code and hyperparameters on
the same train sets as used for training diffusion backbones. For the Tribolium
dataset, we observed bad performance of N2V due to correlated noise in the

* https://github.com/zsyOAOA/DifFace
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input images and therefore trained structN2V [3] using a square mask of size
5x5 pixels around each masked pixel. For the Flywing dataset, since only 2D
clean images were available, we trained CARE on max-projected noisy images
without using a projector network as done previously [23]. We report SSIM [22],
MSE and PSNR metrics to compare performance of all methods. To be consistent
with CARE, we evaluate metrics on 3D datasets by first max-projecting them
across the z-plane dimension.

We observe from Table.1 that a simple conditional sampler like Forward-
Backward achieves better performance than N2V across all three datasets signi-
fying the advantage of generative priors provided by the diffusion model. Surpris-
ingly, when N2V predictions were used as input to Forward-Backward sampler,
the performance drops. We hypothesize that this could be because N2V predic-
tions destroy underlying signal leading to sub-optimal generations. Furthermore,
we observe Repaint with mixing noisy image is the best conditional sampler for
all three datasets trailing only behind paired-denoising method CARE. Notably,
our proposed approach is more generalizable during training time. E.g. N2V re-
quired manual tuning of the masks during training to work on Tribolium dataset
with correlated noise in images. In addition, CARE required training an addi-
tional projector network [23] when 3D noisy and 2D clean images in Flywing data
are available. In contrast, our proposed approach does not require any modifica-
tions while training the diffusion models across these different datasets spanning
different noise profiles and shapes thus making it easy to use in practical settings.

3.3 Ablations

To observe the sensitivity of the hyperparameters in different samplers, we vary
critical parameters in each sampler and report the corresponding performance
achieved on Planaria dataset. These critical parameters include 1) Starting time
step (t′) denoting the time step to which noisy image y0 is forward diffused to, 2)
Mixing weights schedule (wt in Eq.5), 3) Mixing stop time step i.e. the time step
beyond which mixing is stopped while sampling in Mixing and Repaint samplers,
4) Number of repeats in Repaint sampler (parameter R in Algorithm 1 - Supple-
mentary text). As seen from Fig.2 (left), increasing t′ leads to cleaner generations
for forward-backward sampler and the performance plateaus after 100 time steps.
For mixing sampler Fig.2 (middle), mixing at time steps closer to t = 0 leads to
decrease in performance as it re-introduces noisy pixels in the denoised output
thus reverting denoising. Further, the schedule for the mixing weights minimally
affects the results. In the Repaint sampler Fig.2 (right), increasing the num-
ber of repeats significantly improves the performance supporting our argument
that semantic consistency improves by repainting. Additionally best results are
obtained when mixing is stopped after t = 50 while repainting continues.

3.4 Qualitative results

Qualitative comparisons highlight more advantages of our proposed framework.
We observe N2V predictions contain horizontal artifacts in Planaria dataset
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Fig. 3. Sample predictions for Planaria, SSIM in brackets. (Top left panel) Noisy
and Clean images. (Bottom left panel) N2V and CARE predictions. (Right panel)
Conditional diffusion denoising using noisy image and N2V prediction as inputs.

Fig. 4. Sample predictions for Tribolium, SSIM in brackets. (Panels are same as Fig.3)

(Fig.3). Presence of such artifacts in N2V denoised images have been reported
before [9]. Further, N2V suffers from bad performance on the Tribolium dataset
due to the presence of correlated noise (Fig.4). Finally, it fails to recover cell
boundaries in Flywing data in extremely noisy regions (Fig.5, Supplementary
Fig.1). In contrast, the best conditional sampler performs well across all scenar-
ios. Notably in the Flywing dataset, Baikal is able to recover cell boundaries in
extremely noisy regions (highlighted by arrows). In addition, while CARE pre-
dictions achieve high SSIM accuracy, qualitatively the cellular structures look
extremely smooth, removing any subcellular features (Fig.3, Fig.4, Supplemen-
tary Fig.1). In comparison, Baikal is able to preserve such subcellular features
(highlighted by arrows).
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Fig. 5. Sample predictions for Flywing, SSIM in brackets. (Panels are same as Fig.3)

4 Conclusion

We demonstrate for the first time, to the best of our knowledge, application of
Diffusion Models for denoising fluorescence microscopy images without needing
paired training data. Baikal opens up future avenues for tackling other common
tasks in fluorescence microscopy like de-blurring, isotropic reconstruction and
super-resolution.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Batson, J., Royer, L.: Noise2self: Blind denoising by self-supervision (2019).
https://doi.org/10.48550/arXiv.1901.11365

2. Belthangady, C., Royer, L.A.: Applications, promises, and pitfalls of deep learning
for fluorescence image reconstruction. Nature methods 16(12), 1215–1225 (2019)

3. Broaddus, C., Krull, A., Weigert, M., Schmidt, U., Myers, E.: Removing
structured noise with self-supervised blind-spot networks. In: 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI 2020). IEEE (2020).
https://doi.org/10.1109/ISBI45749.2020.9098336

4. Chaudhary, S., Moon, S., Lu, H.: Fast, efficient, and accurate neuro-imaging de-
noising via supervised deep learning. Nature communications 13(1), 5165 (2022)

5. Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W.,
Janetopoulos, C., Wu, X.S., Hammer, J.A., Liu, Z., English, B.P., Mimori-Kiyosue,
Y., Romero, D.P., Ritter, A.T., Lippincott-Schwartz, J., Fritz-Laylin, L., Mullins,
R.D., Mitchell, D.M., Bembenek, J.N., Reymann, A.C., Böhme, R., Grill, S.W.,
Wang, J.T., Seydoux, G., Tulu, U.S., Kiehart, D.P., Betzig, E.: Lattice light-
sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolu-
tion. Science 346(6208), 1257998 (2014). https://doi.org/10.1126/science.1257998,
https://www.science.org/doi/abs/10.1126/science.1257998



10 Authors Suppressed Due to Excessive Length

6. Eschweiler, D., Yilmaz, R., Baumann, M., Laube, I., Roy, R., Jose, A., Brückner,
D., Stegmaier, J.: Denoising diffusion probabilistic models for generation of realistic
fully-annotated microscopy image datasets. PLOS Computational Biology 20(2),
e1011890 (2024)

7. Gong, K., Johnson, K., El Fakhri, G., Li, Q., Pan, T.: Pet image denoising based
on denoising diffusion probabilistic model. European Journal of Nuclear Medicine
and Molecular Imaging pp. 1–11 (2023)

8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020).
https://doi.org/10.48550/arXiv.2006.11239

9. Höck, E., Buchholz, T.O., Brachmann, A., Jug, F., Freytag, A.: N2v2-fixing
noise2void checkerboard artifacts with modified sampling strategies and a tweaked
network architecture. In: European Conference on Computer Vision. pp. 503–518.
Springer (2022)

10. Krull, A., Buchholz, T.O., Jug, F.: Noise2void - learning denoising from single
noisy images (2019). https://doi.org/10.48550/arXiv.1811.10980

11. Lecoq, J., Oliver, M., Siegle, J.H., Orlova, N., Ledochowitsch, P., Koch, C.: Remov-
ing independent noise in systems neuroscience data using deepinterpolation. Nature
methods 18(11), 1401–1408 (2021). https://doi.org/10.1038/s41592-021-01285-2

12. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M.,
Aila, T.: Noise2noise: Learning image restoration without clean data (2018).
https://doi.org/10.48550/arXiv.1803.04189

13. Li, J., Zhang, Z., Liu, X., Feng, C., Wang, X., Lei, L., Zuo, W.: Spatially adap-
tive self-supervised learning for real-world image denoising. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9914–
9924 (2023)

14. Li, R., della Maggiora, G., Andriasyan, V., Petkidis, A., Yushkevich, A., Kudrya-
shev, M., Yakimovich, A.: Microscopy image reconstruction with physics-informed
denoising diffusion probabilistic model. arXiv preprint arXiv:2306.02929 (2023)

15. Li, X., Zhang, G., Wu, J., Zhang, Y., Zhao, Z., Lin, X., Qiao, H., Xie, H., Wang,
H., Fang, L., et al.: Reinforcing neuron extraction and spike inference in calcium
imaging using deep self-supervised denoising. Nature Methods pp. 1–6 (2021).
https://doi.org/10.1038/s41592-021-01225-0

16. Liu, X., Xie, Y., Diao, S., Tan, S., Liang, X.: A diffusion probabilistic prior for
low-dose ct image denoising. arXiv preprint arXiv:2305.15887 (2023)

17. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Gool, L.V.:
Repaint: Inpainting using denoising diffusion probabilistic models (2022).
https://doi.org/10.48550/arXiv.2201.09865

18. Pan, M., Gan, Y., Zhou, F., Liu, J., Zhang, Y., Wang, A., Zhang, S., Li, D.:
Diffuseir: Diffusion models for isotropic reconstruction of 3d microscopic images.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 323–332. Springer (2023)

19. Pawley, J.B.: Fundamental limits in confocal microscopy. In: Handbook of biologi-
cal confocal microscopy, pp. 20–42. Springer (2006). https://doi.org/10.1007/978-
0-387-45524-2

20. Scherf, N., Huisken, J.: The smart and gentle microscope. Nature biotechnology
33(8), 815–818 (2015). https://doi.org/10.1038/nbt.3310

21. Shen, C., Yang, Z., Zhang, Y.: Pet image denoising with score-based diffusion
probabilistic models. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 270–278. Springer (2023)



Title Suppressed Due to Excessive Length 11

22. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing
13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

23. Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm,
B., Schmidt, D., Broaddus, C., Culley, S., et al.: Content-aware image restoration:
pushing the limits of fluorescence microscopy. Nature methods 15(12), 1090–1097
(2018). https://doi.org/10.1038/s41592-018-0216-7

24. Xiang, T., Yurt, M., Syed, A.B., Setsompop, K., Chaudhari, A.: DdmΘ2: Self-
supervised diffusion mri denoising with generative diffusion models. arXiv preprint
arXiv:2302.03018 (2023)

25. Yue, Z., Loy, C.C.: Difface: Blind face restoration with diffused error contraction
(2023). https://doi.org/10.48550/arXiv.2212.06512

26. Zhang, Y., Rózsa, M., Liang, Y., Bushey, D., Wei, Z., Zheng, J., Reep, D., Brous-
sard, G.J., Tsang, A., Tsegaye, G., et al.: Fast and sensitive gcamp calcium indi-
cators for imaging neural populations. Nature 615(7954), 884–891 (2023)


