
Fetal MRI Reconstruction by Global Diffusion
and Consistent Implicit Representation

Junpeng Tan1, Xin Zhang1,3(�), Chunmei Qing1,3, Chaoxiang Yang4, He
Zhang5, Gang Li6, and Xiangmin Xu2,3(�)

1 The School of Electronic and Information Engineering, South China University of
Technology, Guangzhou 510640, China.

tjeepscut@gmail.com, eexinzhang@scut.edu.cn
2 School of Future Technology, South China University of Technology, Guangzhou

511442, China.
3 Pazhou Lab, Guangzhou 510640, China.

4 Department of Radiology, Guangdong Women and Children Hospital, Guangzhou
510010, China.

5 Department of Radiology, Obstetrics, and Gynecology Hospital, Fudan University,
Shanghai, 200011, China.

6 Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill,
27599, The United States of America.

Abstract. Although the utilization of multi-stacks can solve fetal MRI
motion correction and artifact removal problems, there are still problems
of regional intensity heterogeneity, and global consistency discrimination
in 3D space. To this end, we propose a novel coarse-to-fine self-supervised
fetal brain MRI Radiation Diffusion Generation Model (RDGM). Firstly,
we propose a novel self-supervised regionally Consistent Implicit Neural
Representation (CINR) network with a double-spatial voxel association
consistency mechanism to solve regional intensity heterogeneity. CINR
enhances regional 3D voxel association and complementarity by two-
voxel mapping spaces to generate coarse MRI. We also fine-tune the
weighted slice reconstruction loss to improve the network reconstruction
performance. Moreover, we propose the Global Diffusion Discriminative
Generation (GDDG) fine module to enhance volume global consistency
and discrimination. The noise diffusion is used to transform the global
intensity discriminant information in 3D volume. The experiments on
two real-world fetal MRI datasets demonstrate that RDGM achieves
state-of-the-art results.

Keywords: Fetal MRI · Slice-to-Volume Reconstruction · Neural Radi-
ation Field · Diffusion Model.

1 Introduction

Fetal Magnetic Resonance Imaging (MRI) is susceptible to inter-slice motion
artifacts [1] [2] [3]. Although many methods can reduce the motion artifacts
within slices, there are still some problems with 3D space discontinuity such
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as insufficient inter-slice motion correction and noise. 3D volume reconstruction
using multiple fetal MRI stacks acquired from different directions has received
increasing attention. In the early work, Ali et al. proposed a robust M-estimation
solution that minimizes the robust error norm function between slices generated
by the model and real slices [4]. Maria et al. proposed a method to reconstruct
fetal volume MRI from 2D slices [5], by combining intensity matching and ro-
bust statistics from 2D slices and excluding the misregistered or damaged voxels
and slices. These Slice-to-Volume (SVR) methods are widely used for fetal brain
motion correction after rigid transformation. Rigid registration cannot solve the
misregistration problem caused by the deformable structures. Amir et al. pre-
sented Patch-to-Volume Reconstruction (PVR) [6], which could reconstruct the
large field of view of non-rigid deformable structures. Further, Alena et al. pro-
posed non-rigid motion correction deformable SVR (DSVR) [7]. Compared with
SVR and PVR, the reconstruction performance of DSVR is improved. Notably,
these SVR methods are all refactoring methods based on machine learning, and
the processing process is tedious.

Recently, SVR methods can realize registration and reconstruction directly
with deep learning. Xu et al. proposed Spatio-Temporal Resolution Enhancement
with Simulated Scans (STRESS) [8]. Xu et al. proposed Iterative Transformer for
Slice-to-Volume Registration (SVoRT) [9]. Shi et al. proposed an Affinity Fusion-
based Framework for Iteratively Random Motion correction (AFFIRM) [10].
However, the existing SVR deep learning methods trained on simulated data are
time-consuming, especially when high-resolution MRI volume is required. Xu et
al. proposed implicit Neural Representation for SVR (NeSVoR) [11], which was a
self-supervised implicit network [12] and overcame the high storage costs of dense
discretized voxel grids [13]. Although the existing fetal 3D volume reconstruction
methods have good effects, there are still defects in fetal MRI with severe motion
artifacts and noise. Inter-slice regional consistency, as well as the overall integrity
of the volume, are not considered.

Fig. 1. The general block diagram of our method RDGM.
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To address the above issues, we propose a novel coarse-to-fine self-supervised
fetal brain 3D MRI reconstruction method, called Radiation Diffusion Genera-
tion Model (RDGM). As shown in Fig. 1, multi-stacks of fetal MRI and brain
masks are used as input. Initially, the pre-trained SVoRT model is employed for
rigid registration of the slices to accommodate varying datasets. Subsequently,
to address regional intensity heterogeneity, a coarse SVR 3D training strategy
is conducted using the proposed Consistency Implicit Neural Representation
(CINR). CINR involves proposing a 3D voxel batch association map from two
distinct voxel mapping spaces, which is the Double-Spatial Voxel Association
Consistency (DSVAC) mechanism. Moreover, to make the CINR network more
robust and improve the network reconstruction performance, we fine-tune the
weighted slice reconstruction loss. Finally, to enhance volume global consistency
and discrimination, the Global Diffusion Discriminative Generation (GDDG)
mechanism is proposed for generating fine high-fidelity fetal brain MRI 3D vol-
ume. GDDG uses the trained CINR network as the bias volume generation net-
work in the diffusion model to optimize the diffusion of noise voxels and generate
discriminative high-quality 3D volume.

2 Methods

Multiple stacks of fetal MRI data are donated as X = [x1, x2, · · · , xn], and n is
the number of stacks. First, we use the masks of each stack M = [m1,m1, · · · ,mn]
by NiftyMIC [14] to segment X. Then, we use a pre-trained model to achieve
rigid registration of each slice in X. The corresponding slice transformations
can be expressed as T = [T1, T2, · · · , Tr] and the slices of all stacks denote as
Y = [y1, y2, · · · , yr], where r is the number of all slices. In the CINR sub-module,
let I ∈ Rr×Np become the data of the acquired slices, Iij denotes the intensity
of the j-th pixel in the i-th slice, and Np is the number of pixels in each slice. V
is an unknown reconstruction volume. All input slices can be represented as an
array of all voxel coordinates as Y ∈ RNv×3 in the CINR intensity generation
network, and Nv is the number of reconstruction volume voxels.

2.1 Consistency Implicit Neural Network

The Implicit Neural Representation network (INR) has been widely used in 3D
rendering [15] [16] [17]. However, the spatial mapping of existing methods will
lose the region-related consistency of the original spatial voxels [11]. To this end,
we propose a new regional intensity learning mechanism for 3D batch voxels in
two different voxel mapping spaces, DSVAC. In this way, by combining the input
voxel regions of a 3D batch of the CINR network, the network can strengthen
the connection between points in different voxel mapping spaces.

[V1(y), Z1(y)] = MLPV1(y); [V2(y), Z2(y)] = MLPV2(ϕ(y)) (1)

V (y) = V1(y) + V2(y);Z(y) = Z1(y) + Z2(y) (2)
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where MLPV1
(·) and MLPV2

(·) are the original regional intensity learning net-
work and hash grid encoding intensity learning network, respectively. All MLPs
have one hidden layer with 64 units and ReLU activation. ϕ(·) is the hash grid
encoding, ϕ(y) = [ϕ1(y), ϕ2(y), · · · , ϕL(y)] and L is the length of hash gird en-
coding. V (y) and Z(y) are the coordinate feature vector and intensity feature
vector at position y, respectively. Further, we adopt a continuous slices acquisi-
tion model to generate the intensity of j-th pixel in the i-th slice Iij .

Iij = Ci

∫
Ω

Mij(y)Bi(y) [V (y) + ϵi(y)] dy (3)

Mij(y) = g(T−1
i ◦ y − pij ;Σ); g(u;Σ) =

1√
(2π)3det(Σ)

exp(−1

2
uTΣ−1u) (4)

Bi(y) = MLPB(ϕ1:b(y), ei) (5)

where Ω is the 3D mask region, Ci is scaling factor, Mij(y) is the coefficient of
spatially aligned. Ti is the rigid transformation of the i-th slice from transformer-
based pre-trained SVoRT. pij is the location of pixel Iij in the slice coordinates.
Σ is the covariance matrix of the Gaussian PSF. Bi(y) is the bias field, wihch
uses the low-level encoding ϕ1:b(y) = [ ˙ϕ1(y), ˙ϕ2(y), · · · , ϕb(y)] and the slice em-
bedding ei to train Bi(y). ϵi(y) is white Gaussian noise with E[ϵi(y)] = 0 and
E[ϵi(y)ϵi(z)] = σ2

i (y)δ(y − z), δ(·) is the Dirac delta function. According to Eq.
(4), the mean and variance of pixel Iij can be denoted as:

E[Iij ] = Ci

∫
Ω

Mij(y)Bi(y)V (y)dy;σ2
ij = C2

i

∫
Ω

M2
ij(y)B

2
i (y)σ

2
i (y)dy (6)

σ2
i (y) = MLPσ (Z(y), ei) (7)

According to the continuous iterations of the training network MLPV1(·), MLPV2(·),
MLPB(·) and MLPσ(·), variables V (y), Mij(y), Bi(y) and σ2

ij can be obtained.
Combined with Eq. (4), the intensity of each pixel is calculated.

2.2 Global Diffusion Discriminative Generation

Here, we adopt the idea of diffusion [18] [19] [20][21] generation for the volume-
to-volume reconstruction of fetal brain MRI 3D volumes. Combined with the
CINR, we propose a GDDG module. The global feature intensity can be learned
and the uniform distribution of the overall intensity can be strengthened by the
global discriminative optimization of the noise voxels with continuous diffusion.
Let the CINR output V as GDDG v0, we define a forward diffusion process q
that gradually adds Gaussian noise to the initial MRI v0 over t iterations:

q (v1:t | v0) =
t∏

i=1

q (vi | vi−1) ; q (vi | vi−1) = N (vi |
√
αivi−1, (1− αi) I) (8)
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where the scalar parameters α1:t are hyper-parameters, I is unit tensor and
0 < αi < 1. The distribution of vi given v0 by marginalizing out the intermediate
steps can be as

q(vi | v0) = N (vi |
√
γiv0, (1− γi)I) (9)

where γi =
∏i

m=1 αm, recall that the generation model is trained to estimate
noise. Here, we use CINR as the score generation network model. vi−1 can derive
the posterior distribution as

vi−1 =
1

√
αi

(vi −
1− αi√
1− γi

CINR(v0,vi, γi)) (10)

Thus, given vi, through the continuous iterative generation of Eq. (10), we ap-
proximate v0 as

v̂0 =
1

√
γi
(vi −

√
1− γiCINR(v0,vi, γi)) (11)

2.3 Loss Functions

1) Slice Reconstruction Loss: We use the generated pixel intensity mean
Iij and variance σ2

ij to reconstruct the underlying volume by minimizing the
negative log-likelihood Gaussian distribution.

LI =
1

|B|
∑

(i,j)∈B

λ
(Iij − Īij)

2

2σ2
ij

+
1

2
log

(
σ2
ij

)
(12)

where B ⊂ {1, · · · , Ns} × {1, · · · , Np} is a batch of data, Iij is initial pixel
intensity. λ is the trade-off parameter.

2)Image Regulation Loss: We adopt several regularization methods rm(·)
(isotropic total variation, first-order Tikhonov, and edge-preserving) to improve
image quality and suppress noise.

RV =
3∑

m=1

2

K|B|
∑

(i,j)∈B

K/2∑
k=1

rm(
|V (xijk)− V (xijl)|

∥xijk − xijl∥2
) (13)

Here, K is the number of subjects, we split K into K/2 pairs.
∣∣V (

xijk

)
−

V
(
xijl

)∣∣/∥∥xijk−xijl

∥∥
2

is the directional derivative for each pair, and l = k+K/2.

3) Bias Field Loss: According to [11], the bias field Bi and the volume V
is unique up to a constant factor. To disambiguate (Bi, V ) and (cBi,

1
cV ), we

should force the mean log bias field to be zero, where c is any constant. Therefore,
we can get the bias field loss function as follows:

RB =

 1

K|B|
∑

(i,j)∈B

K∑
k=1

logBi(xijk)

2

(14)
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Finally, the training optimization problem can be denoted as

argmin
θ

L(θ), L = LI + λV RV + λBRB (15)

where parameters λV and λB are the trade-off weights for the regularization
terms, θ is the set of trained network parameters. The learning rate is 0.001 and
λ is set as 20, λV = 2, λB = 100, α0 = 0.001, t = 10. The experimental device
is a GeForce RTX 3090 Ti 24G.

3 Experiments and Results

3.1 Datasets

We use two real-world datasets to validate the proposed model. Dataset A con-
tains 132 stacks from 44 subjects, with the gestational age ranging from 24
weeks to 37 weeks. These stacks are acquired using a 3T Philips Ingenia scanner
and the resolution is 0.71 × 0.71 × 3.0 mm3, TR/TE = 15000/177 ms. This
study is approved by the institutional review board (Guangdong Maternal and
Child Health Hospital, China). Dataset B contains 1106 stacks from 284 sub-
jects. These stacks are acquired using a 1.5T Siemens Avanto scanner and the
resolution is 0.54 × 0.54 × 4.4 mm3, TR/TE = 1350/92 ms. The gestational
ages are from 21 weeks to 36 weeks. This study is approved by the institutional
review board (Obstetrics and Gynecology Hospital, Fudan University, China).

3.2 Compared with Results of Different Methods

We adopt some state-of-the-art SVR methods as the baselines, which have open-
source implementation: NiftyMic [14], SVRTK [1], DSVR [7], SVoRT [9] and
NeSVoR [11]. As shown in Fig. 2, our method achieves the best reconstruction
volumes. However, the experimental results of subjects 2 and 3 are slightly less
accurate than those of subject 1 and have a little artifact. Dataset B has more se-
vere motion artifacts. Due to severe motion in subjects 2 and 3, the experimental
results of CVRTK, NiftyMic, and DSVR are not shown in Fig. 2.

3.3 Simulated Fetal Brain Data

The Fetal Brain Atlas sample (26 weeks) [22] is evaluated by slices to simu-
late real-world fetal stacks [23]. The maximum translation and rotation in the
motion trajectory is 21.4 mm/s and 59.7 degree/s, respectively. We compare
quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), Root Mean Square Error (RMSE), and Normalized Cross-
Correlation (NCC). In Table 1, our proposed method achieves the best results
in all quantitative metrics.
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Fig. 2. The reconstruction volumes on different methods. Subject 1 (25 weeks) is from
dataset A, and subject 2 (34 weeks) and subject 3 (35 weeks) are from dataset B.

Table 1. Mean (Standard Deviation) of Quantitative Metrics on Simulated Data.

Methods PSNR(dB)↑ SSIM↑ RMSE↓ NCC↑
SVRTK 23.7439(0.1234) 0.3991(0.0012) 0.8640(0.0012) 0.2785(0.0029)
SVoRT 24.8237(0.2865) 0.3906(0.0052) 0.9581(0.0079) 0.1816(0.0555)
DSVR 25.5134(2.2824) 0.3959(0.0012) 0.8693(0.0013) 0.2728(0.0030)

NeSVoR 26.0515(0.0554) 0.3782(0.0005) 0.8846(0.0009) 0.4567(0.0041)
Ours 26.3754(0.0126) 0.4200(0.0001) 0.7807(0.0001) 0.5452(0.0029)

3.4 Reconstructing Volumes at Different Gestational Ages

To verify the effectiveness of RDGM with more samples, we performed recon-
struction experiments on fetuses of different gestational ages using samples from
dataset A. In Fig. 3, RDGM reconstructs great results at different gestational
ages. We can see a tendency for fetal brains to grow with gestational age.

3.5 Ablation Study

Fetal brain atlas samples (26-31 weeks) are evaluated by volume to simulate
ablation studies. we evaluate the model component by ablating the baseline
(NeSVoR), only improving the GDDG fine module (OD), the proposed method
CINR without GDDG fine module (ND), only improving network (ON), the pro-
posed method GDDG without CINR (NN), only improving loss functions (OL),
the proposed method without our improved loss function (NL), and RDGM.
In Table 2, compared with the baseline, the reconstruction results of all our
improved modules are better than NeSVoR.

3.6 Downstream Task Analysis

We quantify and analyze the gestational age estimation of the downstream task
for the reconstruction results in Table 3 and Fig. 4, respectively. In Table 3, we
show the reconstruction results of different algorithms for the downstream task of
fetal brain age estimation quantified experimentally through the literature [24].
Several common evaluation criteria are used, including the mean absolute error
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Fig. 3. The reconstruction results at different gestational ages.

Table 2. Ablation Study of Sub-module Quantitative on Simulated data.

Methods PSNR(dB)↑ SSIM↑ NRMSE↓ NCC↑
w/o baseline 19.6583(0.6119) 0.6716(0.0646) 0.1096(0.0079) 0.5131(0.0415)

w/o OL 19.7958(0.6327) 0.6742(0.0574) 0.1018(0.0059) 0.5275(0.0409)
w/o NL 20.2403(0.6271) 0.6770(0.0646) 0.0961(0.0063) 0.5194(0.0445)
w/o ON 20.2088(0.4302) 0.6991(0.0118) 0.1084(0.0073) 0.5108(0.0207)
w/o NN 20.0470(0.7552) 0.7106(0.0646) 0.0947(0.0054) 0.5246(0.0403)
w/o OD 20.0296(0.2147) 0.6716(0.0106) 0.1081(0.0040) 0.5153(0.0164)
w/o ND 19.8502(0.6600) 0.6756(0.0615) 0.1031(0.0062) 0.5261(0.0417)

w Full A 20.8536(0.7686) 0.7191(0.0490) 0.0949(0.0083) 0.5331(0.0374)

(MAE), the standard deviation (STD), Pearson’s correlation coefficient (PCC),
and Spearman’s rank correlation coefficient (SRCC). As shown in Fig. 4, the
distribution of gestational age prediction with linear regression is visualized for
the two datasets. In the top row of Fig. 4, the reconstructed MRI volumes by
our proposed method have a more clustered scatter diagram in the downstream
fetal brain age estimation task. In the lower row of Fig. 4, between 21-25 weeks,
the reconstructed MRI volumes of the three methods could not correctly predict
brain age. Most of the correct points fall in the 26-36 weeks range. This indicates
that the dataset has clear high-quality data acquisition in this range.

4 Conclusion

In this work, we propose a new real-world multi-stacks fetal brain MRI recon-
struction model, called RDGM. This method incorporates slices rigid registration
(SVoRT), the novel slice-to-volume regional consistency self-supervise generation
(CINR), and volume-to-volume global associative high-quality diffusion recon-
struction (GDDG). RDGM also reconstructs motion artifact data obtained from
various real scans by self-supervised learning. Especially, our proposed method
can achieve optimal reconstruction results in both high and low-quality data.
gestational age estimation experimental demonstrates the effectiveness of the
proposed method. In the future, we will investigate reconstruction algorithms
for fetal MRI with fewer stacks and lower-quality acquisitions.
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Fig. 4. Results of gestational age estimation.

Table 3. Ablation Study of Sub-module Quantitative on Simulated data.

Datasets Methods Evaluation Metrics
MAE STD PCCage SRCCage SRCCgap

Dataset A
SVoRT 2.003 2.47 0.683 0.766 -0.659
NeSVoR 1.311 1.399 0.907 0.706 -0.634

Ours 0.681 0.684 0.979 0.979 -0.157

Dataset B
SVoRT 2.871 3.113 0.799 0.774 -0.895
NeSVoR 3.243 3.293 0.705 0.794 -0.793

Ours 2.851 2.885 0.821 0.835 -0.784
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