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Abstract. In many cancers including head and neck squamous cell car-
cinoma (HNSCC), pathologic processes are not limited to a single region
of interest, but instead encompass surrounding anatomical structures and
organs outside of the tumor. To model information from organs-at-risk
(OARs) as well as from the primary tumor, we present a Hierarchical
Multi-Organ Graph Network (HoG-Net) for medical image modeling
which we leverage to predict locoregional tumor recurrence (LR) for HN-
SCC patients. HoG-Net is able to model local features from individual
OARs and then constructs a holistic global representation of interac-
tions between features from multiple OARs in a single image. HoG-
Net’s prediction of LR for HNSCC patients is evaluated in a largest
yet studied dataset of N=2,741 patients from six institutions, and out-
performs several previously published baselines. Further, HoG-Net al-
lows insights into which OARs are significant in predicting LR, pro-
viding specific OAR-level interpretability rather than the coarse patch-
level interpretability provided by other methods. Code can be found at
https://github.com/bmi-imaginelab/HoGNet.

Keywords: Head and Neck Cancer · Graph Neural Networks · Tumor
Recurrence

1 Introduction

The human body is a complex system of organs and tissues dependent on one
another for normal physiological function. Disease processes including cancer are
not limited to well-defined spatial confines, but instead pose wide-ranging dis-
ruptions to this interconnected system. Medical images provide a snapshot view
into the body, but oftentimes medical image analysis fails to model disease pro-
cesses within this larger context and instead focus on a single region of interest
(ROI). Modeling the full range of surrounding anatomy is particularly relevant
for certain cancers including head and neck squamous cell carcinoma (HNSCC)
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in which disease migration prominently occurs in structures and organs neigh-
boring the primary tumor. While some methods have attempted to combine
imaging features from multiple ROIs, they often suffer from several limitations
[12,3,10]. First, many methods require uniformity in image input dimensions,
and are inflexible in modeling the highly variable dimensionality of inter-patient
organ and anatomical structure sizes. Similarly, there is often variability in pa-
tient anatomy or data acquisition that may result in incomplete ROI delineation
across patient samples, resulting in samples with different numbers of ROIs for
models to analyze. Finally, features from multiple regions are often fused via
simple concatenation or averaging which can quickly lead to overwhelming fea-
ture dimensionality [17,4], especially in the setting of smaller medical imaging
datasets. To overcome these challenges and to holistically model local and global
imaging features from tumor and non-tumor regions, we propose a hierarchical
graph-based image analysis pipeline which can flexibly model heterogenous pa-
tient data while providing interpretable insights into which regions of the head
and neck anatomy are significant in predicting tumor recurrence.

HNSCC is among the most common cancers and constitutes 4.5% of cancer
diagnoses and 4.6% of cancer deaths each year [5]. It is highly invasive, often
presenting with locoregional involvement of nearby structures including cervical
lymph node chains and other organs in the head and neck anatomy [9]. Further-
more, though improvements in therapy including chemoradiation have improved
outcomes, up to 30% of patients develop locoregional recurrence (LR) of their
disease, defined as tumor recurrence within the same primary site or surrounding
head and neck anatomy [22]. 3D CT images are regularly acquired for HNSCC
patients as part of the normal radiation treatment planning process, and used
to contour targeted tumor regions as well as organs-at-risk (OARs) which might
be damaged by radiation due to their proximity to tumors. Multiple approaches
have been proposed for the prediction of LR after radiation from pre-treatment
CT imaging including those leveraging radiomic features [23] and CNNs [6,18].
These studies have exclusively modeled image features from the tumor and have
proven suboptimal in demonstrating satisfactory generalizable performance for
LR classification [23,18]. The possibility for local changes in specific OARs as a
result of HNSCC pathological development and the global interactions between
primary tumors and their anatomical environments motivate our proposed hier-
archical graph-based approach.

Computational graphs are flexible data structures which encode multiple
data points (nodes) and their relationship (edges) to one another. Graph neural
networks (GNNs) have been extensively studied to model graphs in a variety of
domains with common tasks including node classification [13] and graph classifi-
cation [24,7,16]. Graph representations of images have been previously modeled
using GNNs, including in the domains of natural [2] and histopathology im-
ages [26]. Graph analysis of medical images has also been explored, commonly
studying the lung and brain [7,16]. While in some of these domains graph repre-
sentations directly correspond to well-defined ROIs such as cell nuclei or brain
parcellations, in many cases constructing graphs from images is less straightfor-
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ward. Oftentimes, studies face difficulties in identifying meaningful nodes within
input images or in building graph representations of different imaging features.
For example, image patches or supervoxels are frequently used to create nodes
within a graph structure [20,15,2,3]. However, these patches often do not con-
form to biologically or anatomically defined ROIs and instead are simply arbi-
trary partitions of imaging data. Node features for these patches are frequently
assigned by using simplistic aggregations of pixel- or voxel-wise intensity (i.e.
mean or maximum for a patch) or by inputting the patch into an encoder (i.e.
ResNet, thereby requiring a uniform patch size for each node). Other recent
approaches have also leveraged radiomic features extracted from supervoxels or
other ROIs [4,10]. These methods of node identification and node feature ex-
traction incompletely leverage the flexibility of graph structures, and often lose
information in the transition from image to graph representations. In turn, the
interpretability of such graph-based approaches is lowered as nodes do not cor-
respond to meaningful ROIs and performance can be worsened by the loss of
pixel-wise information.

Contributions. We present HoG-Net, a hierarchical multi-organ graph
network which seamlessly encodes imaging information from physician-defined
organs-at-risk (OARs) and tumors into a graph structure for downstream analy-
sis (henceforth we refer to OARs as the set of all organs-at-risk and the primary
tumor for simplicity of notation). HoG-Net leverages two key innovations. First,
we develop anOARenc module which effectively models intra-OAR heterogeneity
by encoding OAR imaging information into nodes and node features, irrespec-
tive of differences in input dimensionality. Second, we propose a SuperGraph
module predicated on modeling HNSCC in the global context of OAR intercon-
nectivity (i.e. inter-OAR heterogeneity) to predict LR from pre-treatment CTs.
HoG-Net uniquely addresses the difficulty of modeling non-uniform inter-patient
anatomy (OARenc) while building a holistic representation (SuperGraph) of
HNSCC pathology on imaging in order to improve classification of patient out-
comes. HoG-Net is evaluated on the largest dataset studied to date for HNSCC
locoregional recurrence prediction (N=2,741) and outperforms several previously
published state-of-the-art (SOTA) methods.

2 Methodology

In this section we first describe graph convolution and graph attention mech-
anisms. We then describe how OARenc extracts local imaging features from
multiple OARs from each patient and encodes each into a graph representation.
We finally describe the creation of a patient-level SuperGraph, encoding global
relationships between different OARs of a single patient. An overview of the
proposed framework is shown in Figure 1 and Algorithm 1.

2.1 Preliminary

Graph neural networks have been extensively studied in multiple domains to
model graph data structures for various downstream tasks. Given nodes V =
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Fig. 1. Framework Overview. An input image with n corresponding organ-at-risk
(OAR) segmentations is used to create individual graphs for each OAR. Following, n
encoders (each consisting of ×Lc graph convolution blocks) encodes the corresponding
n OARs into graph representations. These representations are used as node features for
SuperGraph yielding an image-level graph for each patient. SuperGraph is modeled
via ×Lb graph attention blocks for tumor recurrence prediction.

{v0, v1, ...vm}, associated node feature vectors {x0, x1, ...xm}, and edges E =
{(vi, vj)}, a graph G = {V, E} can be defined. The adjacency matrix is then de-
fined as A = 1 if (vi, vj) ∈ E , else: 0. The diagonal degree matrix is Dii =

∑
j Aij .

A contains edges between vi and vj whereas D provides the number of edges
containing vi. Both graph convolutional neural networks (GCNs) and graph
attention neural networks (GATs) have been extensively studied for graph mod-
eling. Mirroring CNNs commonly used in imaging applications, GCNs employ
convolutions to update node features based upon neighboring node features.
Kipf and Welling [13] formulated graph convolutions as X ′ = D̃−1/2ÃD̃−1/2Xθ,
where Ã = A + I, D̃ii =

∑
j Ãij , and θ is a learnable weight matrix. Alterna-

tively, GATs leverage widely popularized attention mechanisms for graph data
structures. Specifically, Veličković et al. [24] formulated graph attention as a
sequence of MLP-based projection of node features followed by computation of
attention scores between projected node features using a simple feed-forward
layer. Succinctly, x′

i = ∥Kk=1σ(
∑

j αijθxj) where x
′
i denotes an updated node fea-

ture, σ denotes an activation function, α is the learned attention score between
two nodes, θ is a learnable weight matrix, and K represents multiple attention
heads. α is only computed for nodes with edges in E .

Overview of Hierarchical Graph Architecture. To model imaging fea-
tures from relevant organs-at-risk (OARs) and the primary tumor, we adopt a
hierarchical graph approach. First, we leverage an OARenc module to create
local graphs for each of the n pathology-relevant OARs. Graph convolutions are
then applied to each OAR graph to produce features which are embedded into a
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global SuperGraph representation. Finally, GAT layers model SuperGraph to
produce the binary classification prediction.

Algorithm 1: Overview of HoG−Net

Input : CT Image and OAR Contours per Patient
Output: Binary Prediction of Locoregional Recurrence

1 OARenc: for OAR do
2 1. Create a graph Go from voxel neighbors of OAR;
3 2. Perform graph convolution;
4 3. Pool node features to produce OAR feature vector fo;

5 end
6 SuperGraph: for OAR do
7 1. Encode OAR feature vector fo into SuperGraph G node;
8 2. Create edge between OAR and primary tumor node;

9 end
10 Model SuperGraph G with graph attention layers.

2.2 Organ at Risk Graph Encoding

OARenc.Using segmentations for OARs on each patient CT, OARenc first
builds a graph Go = {V, E} for each OAR studied. V contains the set of all voxels
vi within the mask of OAR o with corresponding node features xi = [Ii, cx, cy, cz]
representing patient-normalized voxel intensity and x, y, and, z coordinates of
vi. The edge set E is constructed from the 26 voxels vj nearest vi, provided
they reside within the contour for OAR o. This process results in the creation
of n graphs for each patient image with variable node numbers reflecting OAR
sizes. Each of these graphs is modeled independently via separate sets of multiple
Graph Convolution Blocks (GCBs) composed of graph convolution and TopK
pooling layers. This produces a feature vector fo representing imaging features
for a given OAR. The use of GCN and TopK pooling mirrors down-sampling
operations of conventional CNNs and concentrates high- and low-level informa-
tion into feature vectors for SuperGraph. Skip connections are created by global
average pooling output node features from each GCB and appending them to
input node features for SuperGraph to retain information from multiple feature
levels [21].

2.3 SuperGraph Modeling

SuperGraph Creation. A SuperGraph representation is formulated from the
combined feature vectors of each OAR produced by OARenc. Formally, Gs =
{Vs, Es} where Vs contains n OAR nodes (vo), each representing a single OAR
from a given patient CT. Node features fo are obtained from OARenc concate-
nated with residual features from intermediate GCN outputs and the centroid
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coordinates for each OAR. Edges for SuperGraph are Es = [(v0, vo)]
n
o=1 where

v0 corresponds to the primary tumor node. This reflects a focus on the pathology
of the primary HNSCC tumor and enables HoG-Net to model relationships be-
tween each OAR and the primary tumor. In this way, one SuperGraph is created
per patient containing distilled image information from each OAR subgraph.

To model SuperGraph representations, we employ multiple Graph Atten-
tion Blocks (GABs), each composed of a graph attention layer, layer norm, and
ELU activation. A global average pooling and linear readout layer are used for
binary classification. The entire HoG-Net model including OARenc GCBs and
SuperGraph GABs is trained end-to-end using binary cross entropy loss.

3 Experiments

3.1 Datasets and Implementation

The binary classification task studied was presence or absence of locoregional
tumor recurrence two years following radiotherapy. This outcome is clinically
relevant, and is shared with previous studies for ease of comparison [23,6,18].
The publicly available RADCURE [27] (N=2,346, 385 LR), Head-Neck-PET-CT
[23] (HNPET, N=274, 30 LR), and Head-Neck-Radiomics-1 [1] (HN1, N=121, 30
LR) datasets from the Cancer Imaging Archive are studied with a total N=2,741
patient CTs. Clinical variables studied included whether a patient received con-
current chemo-radiotherapy in addition to patient HPV status, sex, age, tumor
stage (AJCC 7th edition), Eastern Cooperative Oncology Group (ECOG) perfor-
mance status, tumor subsite (oropharyngeal, laryngeal, etc.), and tumor volume
(assessed using dimensions of primary tumor contours). These variables were
concatenated with output features from each studied model prior to the linear
layer used for binary classification. To evaluate model generalizability across
datasets and institutions, we trained (N=1,502) and validated (N=342) HoG-
Net on RADCURE and tested held out data from RADCURE, HNPET, and
HN1. Training and testing splits for RADCURE mirrored those of the published
challenge [11], with the remaining cases used for validation. In total there were
1,502 training, 342 validation, and 897 testing samples. In addition to CT im-
ages, each studied patient had a primary tumor segmentation created by the
treating physician. Because ground-truth segmentations for OARs were avail-
able for only a subset of publicly provided data, nnUNet [8] models were trained
and used for OAR segmentation (details in supplementary).

All model training was performed on a single NVIDIA GeForce RTX 2080
Ti with a batch size of 4. HoG-Net was implemented with Lc = 5 GCBs in
OARenc and Lb = 2 GABs for SuperGraph modeling.

3.2 Quantitative Prediction of LR

We report AUC and F1-score for LR classification on RADCURE, HNPET, and
HN1 test datasets. HoG-Net is compared to Mateus et al. [18] and Diamant
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Table 1. Metrics for Locoregional Recurrence Prediction.

HN1 HNPET RADCURE
Image Only ↓ AUC F1 AUC F1 AUC F1

Ours 0.662 0.577 0.649 0.501 0.721 0.604
Diamant et al. 0.595 0.465 0.488 0.488 0.556 0.526
Mateus et al. 0.604 0.429 0.534 0.471 0.62 0.461
Vallieres et al. 0.645 0.571 0.507 0.479 0.582 0.563
DenseNet (OAR+Tumor) 0.653 0.537 0.666 0.528 0.673 0.557
DenseNet (Full image) 0.648 0.345 0.664 0.329 0.696 0.495

Image+Clinical ↓
Ours 0.809 0.651 0.759 0.582 0.807 0.658
Diamant et al. 0.628 0.584 0.534 0.506 0.627 0.572
Mateus et al. 0.793 0.429 0.751 0.471 0.804 0.461
Vallieres et al. 0.66 0.572 0.633 0.385 0.732 0.575
DenseNet (OAR+Tumor) 0.657 0.476 0.689 0.518 0.702 0.594
DenseNet (Full image) 0.665 0.487 0.663 0.407 0.699 0.595

et al. [6] which published CNN models for LR prediction for HNSCC patients
using the HNPET dataset. Additionally we add a radiomic baseline mirroring
Vallieres et al. [23], one of the original studies for this task. Further, we add two
3D DenseNet baselines (entire image and entire image with non-OAR regions
masked as inputs). Finally, we compare the performance of each of these models
when trained with only the image as input as well as with clinical variables
concatenated.

As seen in the quantitative results in Table 1,HoG-Net outperforms baselines
in most test sets. This is the largest study to date of imaging-based prediction
of locoregional recurrence for HNSCC, and thus our results comprise a baseline
for future experiments on these public datasets. As reported by previous studies
[23,6,18], the addition of clinical features to imaging features improves perfor-
mance when compared to imaging features alone. Interestingly, tuned DenseNet
models outperformed previous approaches [23,6,18] on several of the test sets
studied. This might reflect improved discriminative performance by providing a
larger degree of contextual information to models in the form of OAR regions
rather than using only the primary tumor as commonly performed in the ex-
isting literature [6,18]. HoG-Net expands further upon this larger context by
explicitly modeling the relationship between OARs and the primary tumor as a
SuperGraph, and thus achieves both superior performance and improved inter-
pretability when compared to all baselines (Section 3.3).

3.3 OAR Attention

Model attention values were calculated from the final graph attention layer of
HoG-Net and used to identify which OARs composing SuperGraph receive
highest attention during model inference (Figure 2). Across all cases, model at-
tention is consistently highest to the esophagus followed by the parotid glands,
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Fig. 2. Model Attention to OARs. Shown (left) are relative graph attention values to
each of the OARs studied. Also visualized (right) are the locations of the most highly
attended OARs as well as one example of a typical HNSCC primary tumor (red).

retropharynx, and larynx. There are several potential clinical explanations for
these findings. First, secondary primary tumors frequently present as locore-
gional recurrence in HNSCC patients, and these lesions frequently appear in the
contiguous structures of the retropharynx, larynx, and esophagus. It is therefore
possible that our model may be detecting subtle changes in these OARs sugges-
tive of secondary primary tumor development or locoregional recurrence. Second,
each of these structures remains in the vicinity of primary HNSCC tumors; it
is encouraging for instance that our model does not direct high attention to the
brainstem which is generally not involved in HNSCC pathophysiology. These
findings remain a potential avenue for future study, and also demonstrate the
unique interpretability of our graph-based approach; other interpretability ap-
proaches such as class activation maps provide coarser alternatives to model
attention over large regions of an image which cannot be directly assigned
to biologically-relevant ROIs. HoG-Net is able to definitively identify which
OARs are highly attended during model inference on both patient and dataset-
population levels since each node of SuperGraph exclusively corresponds to a
single OAR.

4 Conclusion

In this work we propose a hierarchical graph based approach to holistically model
biologically meaningful OARs for LR prediction of HNSCC tumors. We outper-
form several SOTA methods on the classification task while also providing in-
terpretability into which OARs are significant for model predictions. Individual
variations in model attention to these different OARs may be of clinical value in
future studies. Recent research has been undertaken to determine what regions
of the surrounding head and neck should be targeted during radiotherapy [19],
and interpretable computer vision tools such as HoG-Net might inform these
analyses and perhaps prompt investigation into personalized radiation therapy
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planning. There are several limitations of our work. First, in line with previ-
ous studies [23,6,18], we perform binary classification of LR. In future studies
we might adapt our model for time-to-event analysis to better capture the dis-
ease progression of HNSCC. Second, our formulation of SuperGraph currently
does not involve edge interactions between OARs with one another; we only
model edges between each OAR and the primary tumor. In future work we
might explore additional OARs and the interactions present between them. Fi-
nally, we plan to extend HoG-Net to other medical imaging tasks [25,14] where
holistically modeling local and global image features may more comprehensively
capture biological processes.
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