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Abstract. Alzheimer’s Disease (AD) represents one of the most press-
ing challenges in the field of neurodegenerative disorders, with its pro-
gression analysis being crucial for understanding disease dynamics and
developing targeted interventions. Recent advancements in deep learning
and various representation learning strategies, including self-supervised
learning (SSL), have shown significant promise in enhancing medical im-
age analysis, providing innovative ways to extract meaningful patterns
from complex data. Notably, the computer vision literature has demon-
strated that incorporating supervisory signals into SSL can further aug-
ment model performance by guiding the learning process with additional
relevant information. However, the application of such supervisory sig-
nals in the context of disease progression analysis remains largely un-
explored. This gap is particularly pronounced given the inherent chal-
lenges of incorporating both event and time-to-event information into
the learning paradigm. Addressing this, we propose a novel framework,
Time and Event-aware SSL (TE-SSL), which integrates time-to-event
and event and data as supervisory signals to refine the learning process.
Our comparative analysis with existing SSL-based methods in the down-
stream task of survival analysis shows superior performance across stan-
dard metrics. The full code can be found here: https://github.com/jacob-
thrasher/TE-SSL
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1 Introduction

Advancement in deep-learning-based medical image analysis have shown remark-
able promise in revolutionizing the study of Alzeimer’s Dementia (AD) through

*Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found here

https://github.com/jacob-thrasher/TE-SSL
https://github.com/jacob-thrasher/TE-SSL
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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medical imaging [20,2,19,6], potentially aiding in the management and treat-
ments of the estimated 6.7 million people aged 65+ who live with AD in the
United States [3]. For instance, Chang et al. (2023) [6] developed MRI-based
deep learning framework for differentiating between Alzheimer’s disease, tem-
poral lobe epilepsy and healthy controls. These approaches have been shown
to be successful in identifying subtle patterns in brain images that may be
challenging for human detection. While significant strides have been made in
utilizing computer-assisted tools for detecting Alzheimer’s Disease, the focus
on progression analysis, such as time-to-event prediction, has been compara-
tively less prominent. However, the ability to accurately predict the trajectory
of Alzheimer’s over time is crucial for early diagnosis and can dramatically trans-
form the clinical workflow. Tools capable of forecasting disease progression offer
invaluable insights for personalized patient care, enabling timely interventions
and better management of the disease’s impact on patients’ lives.

Representation learning within deep learning has demonstrated remarkable
potential in extracting meaningful features from data, significantly enhancing the
performance of downstream tasks [5,4,15]. This approach has been particularly
transformative in medical imaging, where it has contributed to breakthroughs in
disease detection and diagnosis [12]. Self-supervised learning (SSL) and its vari-
ants stand out as key strategies in learning these useful representations without
relying on labeled data [15,7,22]. When labels are available, incorporating them
into SSL frameworks can further refine model performance by effectively cluster-
ing data points from the same class closer together while distancing those from
different classes [11]. Despite its success across domains, including medical image
analysis [21,9,17], the application of SSL in analyzing disease progression, such
as in Alzheimer’s disease, remains under explored. Furthermore, there appears
to be a significant gap in the literature, as no existing studies have leveraged
the supervisory signals provided by available labels, such as event indicators, to
enhance the capabilities of self-supervised learning models specifically for pro-
gression analysis in Alzheimer’s diseases. Our research aims to bridge this gap by
integrating these supervisory signals into our self-supervised learning framework,
thereby potentially improving downstream tasks in progression analysis.

Toward this goal, we initially explored the potential of self-supervised learn-
ing (SSL) in the progression analysis of Alzheimer’s disease. As anticipated, the
initial results showcased improved outcomes that further encouraged us to incor-
porate supervisory signals to enhance representation learning for AD progression
analysis. We integrated the event label to better guide the representation learn-
ing specifically tailored for progression analysis. Recognizing the significance of
time-to-event information, we developed a novel self-supervised learning frame-
work, Time and Event-aware SSL (TE-SSL), which incorporates both event and
time-to-event labels as additional supervisory signals. Through evaluation on
the ADNI dataset, TE-SSL demonstrated an improvement in the downstream
performance of time-to-event prediction. Overall, our contributions are:

1. The use of supervisory signals in the form of event occurrence for progression
analysis, offering a novel approach to understanding disease dynamics.
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Fig. 1. Schematic diagram of the proposed time- and event-aware SSL, where ∆∗,∗
represents the time difference between two data elements z∗

2. A novel framework, TE-SSL, that uses time and event labels for SSL training.
3. Demonstrated improved downstream performance for time-to-event predic-

tion across different metrics, showcasing the practical efficacy of our approach
in enhancing the predictive capabilities for Alzheimer’s disease progression.

2 Methods

We consider a set of labeled training examples X with the corresponding labels
Y. Since, we are interested in modeling disease progression, we consider a setup of
survival analysis, where the labels Y contains both time and event information.
Specifically, for each instance i, Yi = (Ti, δi), where Ti denotes the time to event
or censoring and δi is the event indicator, with δi = 1 if the event (disease
progression) occurred, and δi = 0 if the data is censored. Here, censoring refers
to instances where the event has not yet occurred. Importantly, this does not
mean the event will never occur, only that it was not observed during the study.
The goal of survival analysis is to model the survival function S(t) = P (T > t),
which estimates the probability of an event not occurring by time t. Building
upon this setup, we first learn appropriate representations using our proposed
self-supervised learning approach, TE-SSL (section 2.1), which is a contrastive
learning paradigm that utilizes the additional time labels afforded by a survival
analysis to strengthen the pull of elements at similar stages of development to
improve feature extraction. Fig. 1 provides an illustration of our proposed SSL
framework. We then finetune the network with a task-specific objective function
to predict survival outcomes at individual time points (section 2.2).

2.1 TE-SSL: Time and Event-aware Self Supervised Learning

We provide a background of contrastive self-supervised learning, a learning
paradigm designed to use unlabeled data to learn representations by perform-
ing some pretext task. We then provide details for enhancing the SSL learning
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paradigm by introducing supervisory signals, before finally laying out our pro-
posed TE-SSL which leverage both event and time-to-event labels.

Self-supervised learning Self-supervised learning (SSL) is an unsupervised
method for learning representations through pretext tasks, without labeled data.
Formally, given training examples X , they are transformed into a modified ver-
sion X̃ using a set of transformations T to create multi-viewed examples. Trans-
formations T include a set of augmentation functions that do not alter the
intrinsic information contained within the data, thus creating a separate view of
the original data. SSL frameworks are trained with these multi-viewed batches.
For each index i ∈ I ≡ 1, 2, ..., 2N in such a multi-viewed batch, let j represent
the corresponding index of the transformed pair to sample i. In such a setup, a
loss function for the self-supervised learning objective can be represented as:

LSSL = −
∑
i∈I

log
exp (zi · zj/τ)∑

a∈A(i) exp (zi · za/τ)
(1)

where z∗ is the corresponding projection of the input x, τ is a temperature
parameter, and A(i) ≡ I−{i}. Since augmented images are semantically identical
to one another, this method provides anchor points for the model to "pull"
together two augmented views while "pushing" other samples in a batch.

Supervisory signal for SSL training The standard SSL setup described
above cannot maximize similarity between samples of the same class (e.g., dis-
ease category or event vs. censored) in a batch due to the absence of a supervi-
sory signal. While it may seem that standard SSL could eventually differentiate
such attributes over time, recent work has shown that incorporating supervisory
signals significantly enhances the standard SSL setup [11].

To incorporate supervisory signals using available label information (in our
case, event labels), the SSL objective (in Eqn. 1) can be generalized as follows:

LE-SSL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za)/τ
(2)

where P (i) ≡ {p ∈ A(i)|ỹp = ỹi} represents the set of indices for all positive
samples in the multi-viewed batch that are distinct from i, and |P (i)| is the
cardinality of this set. If sample i has an event indicator during the study period,
this objective classifies all samples with an event indicator as positive cases and
those that are censored as negative cases, and vice-versa. Clinically, this would
translate to maximizing feature representations of multiple patients’ imaging
data (within a batch) who eventually convert to AD.

Time-to-event and Event labels for SSL training Progression analysis
uniquely benefits from having both event indicators and time-to-event infor-
mation as labels, providing a comprehensive view of patient outcomes. When
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considering disease progression, it is reasonable to assume that the features of
two patients at similar stages of progression will be more similar than those from
a late-stage and early-stage patient pair. We therefore hypothesize that utilizing
both types of labels in SSL training enhances the learning process, leading to
nuanced models that can accurately predict the event timing and occurrence,
thus significantly improving disease progression analysis.

Towards this, we devise weighing schemes for each sample in the batch rela-
tive to the anchor point, based on their time-to-event information. We calculate
the time difference between the anchor point and other samples in a batch, us-
ing the maximum and minimum differences to assign weights to each pair. These
weights determine the strength of feature similarity, enforcing that patients at
similar stages in development will have a stronger pull than an early/late stage
patient pair. Our proposed SSL learning objective function incorporating both
time-to-event and labels is represented as:

LTE-SSL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
ωi,p exp (zi · zp/τ)∑

a∈A(i) ωi,a exp (zi · za)/τ
(3)

where the weight term ω∗,∗ for each anchor point is calculated as:

ωi,j =
α− β

s− l
∆i,j +

β − α

s− l
s+ α (4)

where ∆i,j = |Ti − Tj | is the time difference associated with data points i and
j. Additionally, we compute Λ = {∆i,j |i, j ∈ I, i ̸= j} and take s = minΛ
and l = maxΛ to establish the maximum and minimum time span differences
between samples in the batch. Finally, α and β serve as hyperparameters defining
the maximum and minimum weight values, respectively. Specifically, the pair
with the smallest time difference is assigned the highest weight, α, and the pair
with the largest time difference receives the lowest weight, β.

2.2 Time-to-event prediction

To leverage the feature space learned with SSL frameworks, we construct a
deep learning framework consisting of an encoder network E(·) and a projec-
tion head P(·). During pretraining (Section 2.1), multiviewed data (original
and it’s augmented copy X̃ ) is passed through the encoder module to obtain
r = E(X̃ ) ∈ RdE , where dE is the dimension of r. A final representation
z = P(r) ∈ RdP (dP is the dimension z) is computed and normalized for the
pretraining procedure. After pretraining, P(·) is discarded and replaced with
task-specific head, which is then finetuned together with the encoder network
on the time-to-event objective.

For our task head, we adopt the DeepHit framework [13], a deep learning
approach to survival analysis. With DeepHit framework, instead of predicting a
single hazard coefficient for a given input, we output a distribution of hazards
at discrete time points. This allows the model to learn the first hitting times
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(predicted time until the occurrence of the first event of interest for each subject)
directly without making assumptions about the underlying form of the data. In
specific, the model learns to minimize the loss function Ltotal = L1 + L2, where
L1 is the log-likelihood of the distribution of the hitting time, defined as

L1 = −
N∑
i=1

[1(δi = 1) ∗ log hTi
i + 1(δi ̸= 1) ∗ log (1− F̂ (Ti|xi)] (5)

where, 1 is an indicator function evaluating to 1 iff δi = 1 (event occurred),
hTi
i corresponds to the predicted hazard for input Xi at time Ti, and F̂ (Ti|xi)

is the estimated cumulative incidence function (CIF) which approximates the
probability that the event will occur on or before time Ti. L2 incorporates a
combination of cause-specific ranking loss functions and is defined as:

L2 = γ
∑
i̸=j

Ai,j · exp(F̂ (Ti|xi), F̂ (Ti|xj)) (6)

where γ is a hyperparameter which indicates the intensity of the ranking loss
and Ai,j = 1(Ti < Tj) represents an indicator function which evaluates to 1 if a
pair (i, j) experience an event at different times.

3 Experiments and Results

ADNI dataset: Our data consists of a cohort of 493 unique patients in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [16] dataset. Each subject
has one or more visits containing a 3D T1-weighted MR Image, yielding a total
of 2007 data points. Patients are diagnosed as being cognitively normal (CN),
having mild cognitive impairment (MCI), or Alzheimer’s dementia (AD) at every
visit. We define converters as subjects whom were CN or MCI during their initial
visit, but developed AD within the duration of the study. Additionally, each visit
contains the number of months since the baseline observation, which acts as the
time-to-event signal. The data were preprocessed via the pipeline laid out by [14]
and divided based on the unique participants to avoid data leakage. For patients
with multiple visits, we treat each visit as a unique data point.

Implementation details: We utilize a 3D CNN adapted from [14] as our
backbone MRI encoder for both pretraining and finetuning tasks. The encoder
takes in X ∈ RN×96×96×96 and outputs a representation E(X) = r ∈ RN×1024,
where N is the batch size.

Pretrain phase: Contrastive based SSL techniques require large batch sizes
to train properly. Due to hardware constraints, we selected N = 16 and accumu-
lated gradients for 8 iterations before backpropagation to simulate a batch size
of 128. The encoded representation r is then passed through the projection head
to achieve z = P(r) ∈ RN×128. We assigned a temperature of τ = 0.07 for all
contrastive loss functions and optimized the model using LARS with a learning
rate of .3×N/256 = .15 [8] and a momentum of 0.9.
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Table 1. Comparison between different time-to-event prediction approach for C-td ↑
and IBS ↓ scores. Bold and underline denote 1st and 2nd best values, respectively.

Methods C-td ↑ IBS ↓
No pretraining 0.7329 0.2099

SSL 0.7511 0.1985
E-SSL 0.7720 0.1997

TE-SSL 0.7873 0.1889

Fig. 2. t-SNE analysis of representations across different SSL frameworks. Individual
points, if not censored, are labeled with different time-to-event groups.

Finetune phase: We first discard the projection head of the pretrained model
and replace it with a task-specific Pt(·) to predict the probability mass function
(PMF) associated with the input. We then apply the Adam optimizer with a
learning rate of 1e− 4 during training.

Evaluation: We compute the Time-dependent Concordance Index (C-td) [1],
which measures the extent to which the ordering of actual survival times of pairs
agrees with the ordering of their predicted risk. Additionally, we evaluate the
Integrated Brier Scores (IBS) [10], which measures an overall assessment of the
model’s performance across all available times considered in the study. These
metrics are calculated using the Pycox library.

3.1 Results

Our primary results in Table 1 showcase a comparison between our E-SSL and
TE-SSL frameworks and baseline models: No Pretraining and SSL. For fairness,
all models, including E-SSL and TE-SSL, were finetuned using the same model
as No Pretraining. We trained each model with three random seeds and reported
their average results. Our frameworks outperform others in both C-td (higher is
better) and IBS (lower is better) metrics. Notably, E-SSL introduces the novel
use of event labels in SSL training for progression analysis, while TE-SSL’s
innovative incorporation of both time-to-event and event information leads to
the best performance, highlighting its efficacy in progression analysis.
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Table 2. Model performance on different values of α and β for TE-SSL pretraining.

α β C-td ↑ IBS ↓
1 0.5 0.7636 0.1954
1 0.7 0.7581 0.1954
1 0.9 0.7883 0.1889

1.1 1 0.7714 0.1981
1.3 1 0.761 0.1931
1.5 1 0.733 0.2027

In Fig. 2, we present t-SNE plots [18] to examine the feature spaces learned by
the SSL frameworks considered in this study. The left panel displays the feature
space resulting from standard SSL training, which lacks the clear separation
between censored patient data and patient data with events observed in the
middle and right panels, where supervisory signals enhance SSL training. Among
the two SSL frameworks with supervisory signals, the incorporation of both time-
to-event and event information appears to achieve superior separability.

3.2 Ablation analysis

We conducted the ablation analysis to better understand the roles of α and β in
our proposed TE-SSL (Eqn. 4), which serve to define the intensity of the weight
values for a pair of inputs (i, j). The difference between α and β dictates how
strongly to differentiate distant pairs. For instance, in a batch of N samples if
(i, j) represents the pair with the largest time difference, setting β = 0, effec-
tively considers j as a negative sample relative to the anchor i. Therefore, we
explored sensible configurations of α and β, with 1 ≤ α ≤ 1.5 and 0.5 ≤ β ≤ 1,
noting that an α− β < 0.5 would inappropriately diminish the negative impact
of distant pairs. The results, presented in Table 2, demonstrate the method’s
relative stability within these selected ranges. It is also noteworthy that TE-SSL
outperforms both standard SSL and the baseline no-pretraining time-to-event
prediction model in five out of six experiments, highlighting its efficacy.

4 Conclusion

We introduce the Time and Event-aware SSL framework, which integrates both
event and time-to-event information to guide the learning process of feature rep-
resentations. As demonstrated, our approach surpasses existing self-supervised
learning methods, including those supervised versions that incorporate only the
event label. This underscores the critical importance of utilizing both event and
time-to-event information in the progression analysis of Alzheimer’s disease. Our
evaluation using the ADNI dataset showcases the practical applicability and ef-
fectiveness of our proposed method, significantly contributing to the advance-
ment of AD progression study.
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