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Abstract. The design of activation functions constitutes a cornerstone
for deep learning (DL) applications, exerting a profound influence on the
performance and capabilities of neural networks. This influence stems
from their ability to introduce non-linearity into the network architec-
ture. By doing so, activation functions empower the network to learn
and model intricate data patterns and relationships, surpassing the lim-
itations of linear models. In this study, we propose a new activation
function, called Adaptive Smooth Activation Unit (ASAU), tailored for
optimized gradient propagation, thereby enhancing the proficiency of
deep networks in medical image analysis. We apply this new activation
function to two important and commonly used general tasks in medical
image analysis: automatic disease diagnosis and organ segmentation in
CT and MRI scans. Our rigorous evaluation on the RadImageNet ab-
dominal/pelvis (CT and MRI) demonstrates that our ASAU-integrated
classification frameworks achieve a substantial improvement of 4.80%
over ReLU based frameworks in classification accuracy for disease de-
tection. Also, the proposed framework on Liver Tumor Segmentation
(LiTS) 2017 Benchmarks obtains 1%-to-3% improvement in dice coeffi-
cient compared to widely used activations for segmentation tasks. The
superior performance and adaptability of ASAU highlight its potential
for integration into a wide range of image classification and segmentation
tasks. The code is available at https://github.com/koushik313/ASAU.
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1 Introduction

Computer Aided Diagnosis: Automated disease detection from abdominal
scans (CT and MRI) has become increasingly important for rapid and accurate
diagnoses. This technology plays a pivotal role in early detection of diseases,
treatment planning, and prognosis. For instance, abdominal CT scans offer a
cost-effective and widely available modality, making them essential for emer-
gency conditions and lesion detection. They provide high-resolution images that
are well-suited for identifying acute abdominal pathologies and tumors. Con-
versely, abdominal MRIs excel in soft tissue contrast, enabling superior tumor
type classification without ionizing radiation.

However, the inherent complexity of abdominal anatomy presents a challenge.
Numerous organs and structures are densely packed, making the distinction be-
tween healthy and pathological tissues difficult, especially in the early stages
of disease where subtle differences may arise [21]. This complexity can lead to
variability in interpretation among radiologists, particularly for rare or atypical
conditions. To address these challenges and improve diagnostic efficiency, deep
learning based computer-aided diagnosis (CAD) algorithms are increasingly em-
ployed to minimize diagnostic errors.

Organ Segmentation: Organ segmentation serves as a foundational step
for numerous tasks in medical image analysis, including CAD systems. Often,
the initial stage of a CAD system involves organ segmentation. Here, we will
focus on liver segmentation as an illustrative example to clinically motivate our
work. However, the proposed method is generic and applicable to diverse organs,
pathologies, and even non-medical applications.

Significance of liver diseases: Liver cancer represents the third leading
cause of cancer-related mortality globally [1]. Liver volume quantification plays
a crucial role in assessing various diseases, such as cirrhosis. Additionally, le-
sions within the liver can be subsequently identified and quantified. Despite its
substantial size, the liver presents a segmentation challenge due to its shape vari-
ability, anatomical alterations in diseased states, and close proximity to other
abdominal organs.

Smooth activation functions are needed: Current deep learning ap-
proaches have shown great promise in enhancing the quality of classification and
segmentation tasks in medical imaging [10,23,13]. While the design and selection
of appropriate activation functions are fundamental to the success of DL models,
existing activation functions are chosen mostly due to efficiency reasons [19,16,6].
Traditional activation functions such as ReLU [19] and its variants (for exam-
ple, Leaky ReLU [25], PReLU [6]), despite being instrumental to the success of
DL, exhibit notable shortcomings. These activation functions are susceptible to
information loss in regions with negative inputs and often struggle to capture
the subtle nuances crucial for delineating intricate anatomical structures [6,4].
Consequently, these limitations can lead to segmentation inaccuracies, which are
highly undesirable in a clinical setting. To address these challenges, the devel-
opment of more specialized activation functions tailored to the specific needs of
medical image analysis becomes paramount. More specifically, we hypothesize
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that the smoothness of the activation function is crucial for the practical and
theoretical aspects of training DL models. Smoothness (meaning that it is con-
tinuously differentiable at all points in its domains) ensures that gradient-based
optimization methods work effectively, contributing to the stability, efficiency,
and generalization capabilities of the models.

Proposed approach: Here, we present a novel smooth activation function,
called Adaptive Smooth Activation Function (ASAU) (Figures 1-2-3), carefully
designed to handle the challenges prevalent in deep learning based medical im-
age analysis. This function embodies a methodological shift towards smoother,
more continuous transitions, offering refined gradients that promote the intri-
cate learning necessary for high-fidelity classification and segmentation tasks.
With the rigorous testing and empirical evaluation on classification and seg-
mentation tasks, our research indicates that applying this ASAU within deep
network architectures (CNNs and Transformers) can substantially enhance mul-
ticlass disease classification (28 diseases from CT, 26 diseases from MRI) from
one of the largest radiology scan benchmark (RadImageNet) and liver segmen-
tation from 201 CT scans. Our comprehensive experiments demonstrate almost
5% improvement in multiclass disease classification accuracy in both CT and
MRI and 1-to-3% improvement in liver segmentation tasks from CT scans.

2 Method

We present the Adaptive Smoothing Activation Unit (ASAU) using a smooth
approximation of the general maximum function family. The maximum function
is defined in equation (1). Popular activation functions like ReLU [19], Leaky
ReLU [16], and Parametric ReLU are special cases of the maximum function,
and they are not differentiable at the origin. First, we approximate the maximum
function using a function that is smooth (continuously differentiable at the whole
real line) and then turn it into a differentiable form. We consider the maximum
function of two values, max(x1, x2) as:

max(x1, x2) =

{
x1, if x1 ≥ x2

x2, otherwise.
(1)

We can rewrite the equation (1) as follows:

max(x1, x2) = x1 + max(0, x2 − x1). (2)

Note that the maximum function is not differentiable at the origin, while one
preferably needs differentiable functions during backpropagation for uncorrupted
information flow. Unlike popular activation functions such as ReLU, Mish [18]
is a smooth activation function that is handcrafted and fixed. Mish is defined
as xtanh(ln(1 + ex)). If we add a non-negative parameter β in Mish, it can
approximate the ReLU activation function too. Note that,

if β → ∞, then xtanh(αSoftPlus(βx)) ≈ max(0, x) (3)
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Fig. 1: Approximation of
Maximum function using
ASAU for varying values
of a, b, α, and β. As β →
∞, ASAU smoothly ap-
proximates the maximum
function.

Fig. 2: Approximation of
Leaky ReLU using ASAU
for different values of a,
b, α, and β. As β → ∞,
ASAU smoothly approxi-
mates Leaky ReLU.

Fig. 3: Approximation of
ReLU using ASAU for
different values of a, b,
α, and β. As β → ∞,
ASAU smoothly approxi-
mates ReLU.

where α is another parameter that controls the smoothness of the function,
and SoftPlus is defined as ln(1 + ex). Maxout is another popular activation
function [5], which is a linear combination of the convex functions that generalize
the ReLU, Leaky ReLU, or its variants. Replacing the equation (3) in equation
(2), we can have

max(x1, x2) ≈ x1 + (x2 − x1)tanh(αSoftPlus(β(x2 − x1)). (4)

If we consider x1 = ax and x2 = bx we can get an approximation of the Maxout
family as

f(x; a, b, α, β) = max(ax, bx) ≈ ax+ (b− a)xtanh(αSoftPlus(β(b− a)x), (5)

in particular, we can derive the smooth approximation of the ReLU and Leaky
ReLU activation function (by considering a = 0 & b = 1 or a = 0.01 & b = 1,
respectively). We call the function in equation (5) as the Adaptive Smooth Acti-
vation Unit (ASAU). Figure (1) shows how the maxout has been approximated
with the ASAU function. Similarly, Figure (2) and Figure (3) demonstrate how
the Leaky ReLU and ReLU are approximated with the ASAU function, respec-
tively. The derivative of the ASAU with respect to x is

∂f

∂x
= a+ (b− a) tanh

(
α ln

(
e(b−a)βx + 1

))
+

(b− a)
2
αβxe(b−a)βx sech2

(
α ln

(
e(b−a)βx + 1

))
e(b−a)βx + 1

(6)

Note that the parameters a, b, α, and β can be used as hyperparameters or
trainable parameters. In the case of the trainable parameters, we will pass the
a, b, α, and β into the backpropagation algorithm. The derivative of a, b, α, and
β will be computed as follows:
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∂f

∂a
= x− x tanh

(
α ln

(
exβ(b−a) + 1

))
−

x2αβ (b− a) exβ(b−a) sech2
(
α ln

(
exβ(b−a) + 1

))
exβ(b−a) + 1

(7)

∂f

∂b
= x tanh

(
α ln

(
exβ(b−a) + 1

))
+

x2αβ (b− a) exβ(b−a) sech2
(
α ln

(
exβ(b−a) + 1

))
exβ(b−a) + 1

(8)

∂f

∂α
= (b− a)x ln

(
e(b−a)xβ + 1

)
sech2

(
ln

(
e(b−a)xβ + 1

)
α
)

(9)

∂f

∂β
=

(b− a)
2
x2αe(b−a)xβ sech2

(
α ln

(
e(b−a)xβ + 1

))
e(b−a)xβ + 1

(10)

By following the proposition by Kidger and Lyons (see below), one can conclude
that ASAU is an ideal candidate for an activation function because ASAU is
continuously differentiable and is a non-polynomial function.

Proposition 1. (Theorem 1.1 by Kidger and Lyons, 2020 [14]) :- Let
ρ : R → R be any continuous function. Let Nρ

n represent the class of neural
networks with activation function ρ, with n neurons in the input layer, one
neuron in the output layer, and one hidden layer with an arbitrary number of
neurons. Also, let K ⊆ Rn be compact. Then, Nρ

n is dense in C(K) if and only
if ρ is non-polynomial where C(K) is the space of all continuous functions.

3 Experiments

3.1 Datasets

For the classification tasks, we use RadImageNet [17] database, which is an open-
access medical imaging database designed to improve transfer learning perfor-
mance on downstream medical imaging applications and perhaps the largest
ever medical imaging dataset so far. From the whole dataset, we experiment
on CT and MRI abdominal/pelvis, consisting of 28 disease classes with an av-
erage class size of 4994 and a total of 139,825 slices (i.e., the dataset itself is
designed to have slices per disease although the overall scans are in volumes-
3D). 28 disease classes are adrenal pathology, arterial pathology, ascites, bil dil,
bladder pathology, bowel abnormality, bowel inflammation, bowel mass degener-
ative changes, dilated urinary tract, fat-containing tumor, gallbladder pathology,
gallstone, intraperitoneal mass, liver lesion, normal osseous, neoplasm, ovarian
pathology, pancreatic lesion, post-op, prostate lesion, renal lesion, soft tissue col-
lection, soft tissue mass, splenic lesion, urolithiasis and uterine pathology. We
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also experimented on the MRI abdomen/pelvis dataset consisting of 26 distinct
(disease) classes with an average class size of 3513 slices and a total number of
91,348 slices. While most of these classes overlap with the CT dataset, the MRI
dataset uniquely includes disease classes like enlarged organs and liver disease,
which are not in the CT dataset. Conversely, the CT dataset has a specific class
for entire abdominal organs.

For the segmentation tasks, we select the Liver Tumor Segmentation Bench-
mark (LiTS) [2] dataset, which is a multi-center dataset collected from seven
clinical centers. It contains 201 CT images of the abdomen. The dataset is com-
pletely anonymized, and the images have been reviewed visually to preclude the
presence of personal identifiers. The whole dataset is distributed into a training
dataset with 130 CT scans (available to the public), and the test dataset has 71
CT scans (blind). Only the training dataset is made publicly available. Thus, we
only trained the segmentation networks on the training dataset.

3.2 Implementation details

We used the PyTorch [20] framework for all the segmentation experiments. The
networks were configured to train for liver segmentation tasks with a batch size
of 16 and a learning rate set to 1e−4. 500 epochs of training were performed to
fine-tune the network parameters adequately with an early stopping patience of
50. To enhance the performance of our network, we used a combination of binary
cross-entropy and dice loss, and an Adam optimizer was chosen for parameter
updates. The data was split into 80% for training, 10% for validation, and 10%
for testing. We resized the image to 256 × 256 pixels in-plane resolution to op-
timize the trade-off between training time and model complexity. To avoid bias,
we also split the cases into independent training (70 patients), validation (30
patients), and test (30 patients) sets. The volumetric CT scans were processed
pseudo-3D (slice-by-slice) to fit into regular computer hardware (GPU). During
prepossessing, we extracted the healthy liver masks.

For classification (disease diagnosis) experiments, we consider Tensorflow-
Keras [3] framework. We consider ResNet-18 [7] and ResNet-50 [7] as baseline
classification networks. The networks are trained with batch size 32, initial learn-
ing rate 0.00001 with Adam [15] optimizer and 1e−4 weight decay rate. The data
was split into 80% for training, 10% for validation, and 10% for testing. Results
are reported on CT scan image data in Table 1 and MRI image data in Table 2.

3.3 Results and Discussion

Table 1 shows the results of ResNet-50 [8] and ResNet-18 architectures on the CT
abdominal/pelvis scan dataset. Here, we examine the efficacy of ReLU, LReLU,
and PReLU activation along with our proposed ASAU. For all the experiments,
the ASAU-based method outperformed all other experimental results in all the
metrics by a significant margin. On the ResNet-50-based architecture, the ASAU
integrated method obtains a high improvement of 8.26% in terms of MCC.
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Table 1: Impact of Activation Functions on 28 Classes in RadImageNet Ab-
dominal/Pelvis CT Scans. “MCC” refers to Matthew’s Correlation Coefficient.
Activation
Function Method Macro Average Micro Average Accuracy MCCPrecision Recall F1-score Precision Recall F1-score

ReLU ResNet-50 35.74 23.16 23.35 67.67 67.67 67.67 67.67 52.84
LReLU ResNet-50 35.97 23.56 23.65 68.10 68.10 68.10 68.10 53.37
PReLU ResNet-50 36.30 23.89 23.77 68.77 68.77 68.77 68.77 54.10
ASAU ResNet-50 46.29 31.30 34.15 72.47 72.47 72.47 72.47 61.10
ReLU ResNet-18 33.70 25.83 27.43 70.12 70.12 70.12 70.12 57.10

Leaky ReLU ResNet-18 33.91 25.98 27.60 70.38 70.38 70.38 70.38 57.52
PReLU ResNet-18 34.20 26.31 27.99 70.52 70.52 70.52 70.52 57.67
ASAU ResNet-18 36.50 27.30 28.99 71.10 71.10 71.10 71.10 58.59
ReLU MobileNet V2 21.42 12.16 12.85 58.68 58.68 58.68 58.68 35.21
LReLU MobileNet V2 21.96 12.51 13.24 59.26 59.26 59.26 59.26 35.93
PReLU MobileNet V2 22.10 12.69 13.39 59.62 59.46 59.46 59.46 36.09
ASAU MobileNet V2 28.07 16.29 18.10 62.64 62.64 62.64 62.64 43.05
ReLU ShuffleNet 24.29 15.37 16.53 62.70 62.70 62.70 62.70 43.19

Leaky ReLU ShuffleNet 24.50 15.58 16.77 63.09 63.09 63.09 63.09 43.31
PReLU ShuffleNet 24.67 15.73 16.93 63.31 63.31 63.31 63.31 43.42
ASAU ShuffleNet 26.20 17.10 18.96 65.22 65.22 65.22 65.22 46.57

Table 2: Impact of Activation Functions on 26 Classes in RadImageNet Ab-
dominal/Pelvis MRI Scans. “MCC” refers to Matthew’s Correlation Coefficient.
Activation
Function Method Macro Average Micro Average Accuracy MCCPrecision Recall F1-score Precision Recall F1-score

ReLU ResNet-50 40.43 24.83 28.04 86.86 86.86 86.86 86.86 62.92
LReLU ResNet-50 40.56 24.99 28.56 87.10 87.10 87.10 87.10 63.25
PReLU ResNet-50 41.10 25.20 28.81 87.25 87.25 87.25 87.25 63.47
ASAU ResNet-50 44.46 33.23 36.17 89.20 89.20 89.20 89.20 69.75
ReLU ResNet-18 35.15 26.66 28.82 87.96 87.96 87.96 87.96 66.65
LReLU ResNet-18 35.67 26.87 28.99 88.12 88.12 88.12 88.12 66.72
PReLU ResNet-18 35.91 26.80 29.10 88.27 88.27 88.27 88.27 66.81
ASAU ResNet-18 38.58 27.58 29.67 88.62 88.62 88.62 88.62 67.32
ReLU MobileNet V2 10.64 10.68 10.30 82.64 82.64 82.64 82.64 47.12
LReLU MobileNet V2 11.05 11.21 10.89 82.99 82.99 82.99 82.99 47.89
PReLU MobileNet V2 11.21 11.35 11.02 83.15 83.15 83.15 83.15 48.04
ASAU MobileNet V2 17.88 14.92 15.21 84.73 84.73 84.73 84.73 55.32
ReLU ShuffleNet 19.58 14.56 14.89 84.47 84.47 84.47 84.47 55.14
LReLU ShuffleNet 19.67 14.77 14.95 84.70 84.70 84.70 84.70 55.36
PReLU ShuffleNet 19.79 14.89 14.99 85.30 85.30 85.30 85.30 55.70
ASAU ShuffleNet 19.78 14.95 15.30 85.35 85.35 85.35 85.35 55.76

Table 3: Performance comparison of different activation functions on liver seg-
mentation benchmark (LiTS) dataset.
Activation
Function

UNet [22] DoubleUNet [10] ColonSegNet [9]
mDSC mIoU Rec. Prec. mDSC mIoU Rec. Prec. mDSC mIoU Rec. Prec.

ReLU 82.06 73.40 77.82 91.10 86.24 77.89 80.68 95.00 80.87 71.71 80.07 87.50
LReLU 82.47 73.98 78.46 91.17 86.27 78.21 80.20 95.67 80.84 71.69 79.31 88.10
PReLU 82.71 73.91 78.77 91.21 86.39 78.09 80.39 95.59 78.91 69.85 77.89 86.27
ASAU 83.62 75.08 80.59 93.29 86.88 78.73 80.77 96.58 83.03 74.18 78.79 91.17

Table 2 shows the MRI abdominal/pelvis dataset results. Again, here, ASU-
integrated ResNet50 obtained an MCC score of 69.75%, which is 6.83% better
than ReLU based method.

Tables 3, 4, and 5 summarize LiTs datasets’ results. Here, we have compared
the performance of eight state-of-the-art medical image segmentation methods
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Fig. 4: Qualitative results comparison for liver segmentation results (LiTS) on
the ResUNet++ model with various activation functions. It can be observed
that ASAU produces more accurate segmentation maps in all three cases.

Table 4: Additional segmentation experiments continued from Table 3.
Activation
Function

TransNetR [13] TransResUNet [23] ResUNet++ [11]
mDSC mIoU Rec. Prec. mDSC mIoU Rec. Prec. mDSC mIoU Rec. Prec.

ReLU 86.11 77.95 80.16 96.34 86.38 78.23 80.85 95.77 77.03 68.19 79.90 83.57
LReLU 86.30 78.37 80.37 96.67 86.18 77.82 79.80 96.59 75.03 66.35 71.64 84.05
PReLU 86.39 78.29 80.32 96.52 85.68 77.30 79.46 96.12 74.39 66.02 74.38 81.99
ASAU 86.41 78.49 80.30 96.65 86.35 78.15 79.89 96.67 78.12 69.56 81.50 83.81

Table 5: Additional segmentation experiments continued from Table 3.
Activation
Function

NanoNet-A [12] UNext [24]
mDSC mIoU Rec. Prec. mDSC mIoU Rec. Prec.

ReLU 75.05 66.53 73.33 83.25 80.27 71.31 78.84 87.82
LReLU 74.05 65.02 73.36 84.23 80.92 72.15 76.84 90.85
PReLU 74.84 66.08 72.47 85.24 79.08 69.95 77.38 88.55
ASAU 76.57 67.30 75.88 84.61 81.98 73.03 79.01 90.45

(UNet [22], DoubleUNet [10], ColonSegNet [9], UNext [24], TransNetR [13],
TransResNet [23], ResUNet++ [11] and NanoNet-A [12]) with four different
activation functions. From the results, it can be observed that ASAU has im-
provement from 1% to 3% as compared to the ReLU activation function. Double-
UNet, along with ASAU, has set a new baseline for liver segmentation tasks with
a DSC of 86.88%, mIoU of 78.73%, recall of 80.77%, and precision of 96.58%.

The results for liver segmentation (LiTS) on the ResUNet++ model with
different activation functions are displayed in Figure 4. It can be observed that
ASAU performs better in segmentation accuracy compared to the SOTA base-
line activation functions, with fine details captured, while ReLU-based meth-
ods started to ignore such details. ASAU is advantageous for both classification
and segmentation algorithms because it is smooth and maintains a stable and
differentiable gradient, which is essential for backpropagation algorithms using
gradient descent.



Adaptive Smooth Activation Function 9

4 Conclusion

This work presents a novel activation function termed the Adaptive Smooth Max-
imum Unit (ASAU), specifically designed to elevate the performance of medical
image analysis tasks through more stable and uncorrupted information flow dur-
ing backpropagation, encompassing both disease classification and segmentation.
The remarkable outcomes both in multiclass disease diagnosis and segmentation
achieved by our framework on established benchmarks like RadImageNet and
LiTS datasets convincingly demonstrate its potential for broader applicability
across an array of medical image analysis tasks. Moving forward, our research
efforts will be directed towards more effectively leveraging three-dimensional
spatial information within the framework. This advancement aims to further re-
fine the diagnostic tools available to clinicians and holds promise for extending
the applicability of ASAU to encompass a comprehensive suite of abdominal or-
gans. By achieving these goals, we strive to enhance the overall robustness and
generalizability of our proposed approach.
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