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Abstract. The dynamic 3D shape of a cell acts as a signal of its physio-
logical state, reflecting the interplay of environmental stimuli and intra-
and extra-cellular processes. However, there is little quantitative under-
standing of cell shape determination in 3D, largely due to the lack of
data-driven methods that analyse 3D cell shape dynamics. To address
this, we have developed MorphoSense, an interpretable, variable-length
multivariate time series classification (TSC) pipeline based on multiple
instance learning (MIL). We use this pipeline to classify 3D cell shape
dynamics of perturbed cancer cells and learn hallmark 3D shape changes
associated with clinically relevant and shape-modulating small molecule
treatments. To show the generalisability across datasets, we apply our
pipeline to classify migrating T-cells in collagen matrices and assess in-
terpretability on a synthetic dataset. Across datasets, our pipeline of-
fers increased predictive performance and higher-quality interpretations.
To our knowledge, our work is the first to utilise MIL for multivariate,
variable-length TSC, focusing on interpretable 3D morphodynamic pro-
filing of biological cells.

Keywords: 4D Cell Shape - Graph Neural Networks - Multiple Instance
Learning - Time Series Classification

1 Introduction

Cell morphodynamics is a cell’s time-dependent morphology or “shape-shifting
ability” [9]. This ability is critical for cell division, migration and differentiation.
Dysregulation of cell shape determination underpins the ability of cancer cells
to escape primary tumours, enter the bloodstream, and localise in a distant and
deadly metastatic site. Indeed, various therapeutic strategies have been proposed
to inhibit shape-changing processes in cancer [3].

Historically, cell shape analysis has focused on describing cells’ fixed, two-
dimensional (2D) shapes by read-outs, such as size, eccentricity, and the number
of protrusions. This analysis of 2D cell shape has provided valuable informa-
tion about signalling states [2], cancer metastasis [29], and drug profiling [6].
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Fig. 1. (A) Cells embedded in collagen matrices were imaged in 3D using oblique-plane
microscopy. (B) Cells and nuclei were segmented and tracked. (C) Segmentations were
converted to point clouds, and 3D shape features were extracted from each time point.
Feature extraction was done by pre-training a DGCNN encoder and (D) fine-tuning it
with SIimCLR. (E) 3D shape features were passed through a MIL-based interpretable
graph transformer (MorphoSense) to predict the label (drug treatment) and output
interpretability scores for each time point.

Additionally, live imaging of 2D cell shapes has enabled phenotypic profiling
of therapeutics [15,17]. The recent advancement of three-dimensional (3D) mi-
croscopy technologies [22] has facilitated the high-throughput acquisition of 3D
cell shapes, paving the way for the deployment of deep learning (DL) techniques
to quantify 3D cell shapes effectively. Although examining 3D cell shapes at
a single point has the potential to provide important information about the
cell state [11], it does not shed light on the dynamic changes cells undergo in
response to external stimuli. Understanding those dynamic changes can unveil
useful insights about cell shape determination [23, 8]. Specifically, interpretable
classification of the dynamic response to pharmacological interventions can offer
much information about the underlying drug mechanisms of action and unlock
new therapies to combat cancer metastasis. This task can be approached as a
multivariate time series classification (TSC) problem. Given a dataset of tracked
3D cells, predicting the drug treatment for each cell based on its cell shape evo-
lution after perturbation in an interpretable manner will allow us to identify the
key 3D shape changes associated with different treatments.

Several multivariate TSC algorithms have been proposed in recent years [21].
While these methods have produced state-of-the-art results on popular bench-
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mark datasets [1], they often require fixed-length time series - a limitation given
that many real-world time series are not uniform in length. To overcome this
limitation, long short-term memory models (LSTM), graph-based models [19],
and an adaptation to the original Random Convolutional Kernel Transform
(ROCKET) [4] have been proposed. However, these methods often lack inher-
ent interpretability. To tackle this issue and produce sparse explanations on
time series data, Early et al. (2024) [12] introduced Multiple Instance Learn-
ing for Locally Explainable Time (MILLET). Notably, MILLET was the first
framework to use multiple instance learning (MIL) on general time series data;
however, while a general pipeline, MILLET focused on fixed-length univariate
TSC. Similar to ideas presented in [12], we propose applying MIL to TSC due
to its inherent interpretability, ease of adaptation, and recent progress in weakly
annotated classification tasks [14]. We extend this work by applying MIL to
multi-variate variable-length TSC of 3D cell morphodynamics by developing a
temporal dependency-aware graph construction and utilising a combination of
graph transformers and conjunctive pooling. This has led to the creation of
MorphoSense, a novel model for interpretable phenotypic profiling of 3D cell
morphodynamics (Fig. 1).

The unique contributions of this paper are: (1) an interpretable framework
that can be used for multivariate, variable length TSC, (2) a cycle-aware tempo-
ral graph construction, (3) the application of this framework to the 3D cellular
morphodynamic classification of drug-treated cancer cells in collagen matrices,
learning the hallmark shape changes induced by a clinically relevant cancer ther-
apy (Palboclib) and small molecules targeting disease-related cell processes, and
(4) the application to another biological dataset of T-cells and a synthetic dataset
of 3D shape dynamics.

2 Methods

2.1 Imaging and segmentation

Following treatment with four small-molecule inhibitors, we prepared and im-
aged live WM266.4 melanoma cancer cells in 3D collagen matrices. Cells were
imaged using 3D light-sheet oblique plane microscopy (OPM) (Fig. 1 A). We
segmented every cell and nuclei using Otsu’s thresholding and active contours,
respectively. We then tracked the dynamics of each cell using a simple particle-
tracking algorithm (Fig. 1 B).

2.2 Feature extraction

DL techniques have transformed 3D shape analysis of everyday objects [30].
Among the most successful applications have been those that utilised point
cloud representations of 3D shapes [31]. Recently, these techniques have been
shown to generalise well to 3D shape analysis of cancer cells [10]. Therefore,
to analyse 3D cell shape dynamics, we obtained smoothed mesh objects from
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cell segmented masks using marching cubes and Laplacian smoothing. We then
uniformly sample 2048 points from each mesh object. To extract meaningful
3D shape feature representations from individual time points of cells, we first
pre-trained a FoldingNet [31] autoencoder with a dynamic graph convolutional
network (DGCNN) [28] encoder (Fig. 1 C). This was trained on a dataset of
over 90,000 point cloud representations of fixed 3D melanoma cells from previ-
ous works [10] and additional datasets. The DGCNN feature extractor with an
additional 2-layered MLP module was fine-tuned using SimCLR [7] (Fig. 1 D).
In the SimCLR configuration, two different augmentations (of rotation, jitter,
shear, flip, zoom) of the same point cloud were fed as input to the SimCLR
model. Only the final EdgeConv block and the projection head were fine-tuned
during training by minimising the temperature-scaled cross-entropy (defined as
the NT-Xent contrastive loss). The trained model was then fixed and used as a
feature extractor to produce 3D shape features for each cell and nuclei pair for
each time point.

2.3 The MorphoSense pipeline

TSC as a MIL problem: MIL aims to classify bags of instances into classes
where only bag-level labels are provided. In its simplest binary classification
form, a bag is positive if and only if at least one of its instances is positive; oth-
erwise, it is considered negative. This paper framed multivariate, variable-length
time series classification as a MIL problem. Each cell’s shape is represented as
a feature vector evolving over time. The shape dynamics of each cell was rep-
resented as a bag of instances X; € RV:*P such that X; = {x},x2,...,x]},
with length N; > 1, where each time point x}' is a D-dimensional vector, and D
is the number of variables in the time series. A common MIL assumption is that
instances within a bag are independent and identically distributed. However, this
is not the case for time series classification. Therefore, we assume that there are
temporal relationships between instances.

Graph construction: Time series data often encapsulate complex dynamics
characterised by time-dependent interactions (e.g., delayed effects). Hence, we
aimed to construct a graph to encode the direct temporal dependencies between
different cellular states over time and the intricate interconnections among mul-
tiple shape state cycles across time. In this work, we represented each time series
as a weighted attributed graph, G; = (Aj;, Xj), consisting of a weighted adjacency
matrix A; and A; € RV*Yi and a node-feature matrix N; € RV:*P The adja-
cency matrix represents the graph topology and can be characterised by the set
of V nodes V = {v1,v2,...,v7}, and € = {e;; := (v;,v;) € V x V| A; ; # 0},
the set of edges, such that A, ; is the (4,7)-th element in A. The node fea-
ture matrix X contains attributes for each node, where the i-th row x; € RP
represents the D-dimensional feature vector of node v;.

When building our graph, we distinguished between two types of edges: tem-
poral and similarity-based. The temporal edges £ are inherently directional and
designed to capture the temporal progression from one cellular state to the next.
They connect each time point ¢ to the next one ¢ + 1, such that each edge
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etr+1 € & represents a temporal connection from time point ¢ to time point
t+1, forallt € {1,2,..., N;—1}. Thus, the set of temporal edges can be defined
as &= {(t,t+1)i < N;}.

The similarity-based edges aimed to encapsulate the relationship between
different time segments based on their feature representations. For a given time
series X; = {x},x7,... ,xévf‘}, representing different cell shapes over distinct
points in time, we constructed a similarity matrix S where each element s,
denotes the cosine similarity between nodes ¢ and m (where ¢t # m thereby ex-
cluding self-loops). For the formation of weighted edges, a threshold 6 is applied
to ensure that an edge ey, is added to the graph if sy, > 6. The weight of each
edge e, was set to the similarity value sy,.

The final weighted adjacency matrix, A of each time series X;, we had
Ay =1forallt < N;, and Ay = spy > 0 for all t,m € N;.

Interpretable Graph Transformer: Given a graph representation of a
time series, we aimed to classify individual nodes and the graph. To this end, we
combined graph transformer layers [26] with conjunctive pooling [12], dubbed
MorphoSense (Fig 1. E). We first passed the weighted graph through two graph
transformer layers to capture the temporal and cycle relationships among fea-
tures. Specifically, given the node features (multivariate time series)?, X =
{x!,x2,...,x"}, we calculated multi-head attention for each edge from m to
n following [26] directly:

Qen = W x" + by

Kem =W px™ +be g

enm = We elnm + bee (1)
(Qens Keym + €conm)

ZueN’(n) Qe Kew + €cpnu)

Qe nm =

where (g, k) = exp (%) is the exponential dot product and d is the hidden size
of each head, c is the the attention head. For the c-th attention head, source
feature vector x" and distant feature vector x™ are transformed in query matrix
Q... € RP*4 and key matrix K., € RP*? using trainable weights W, ,, W
and biases b g, b ;. The edge features are encoded by W, . and b, ., which
is added to the key matrix. After obtaining the graph multi-head attention, a
message aggregation is performed from distant m to n:

V(;’m = Wc’vxm + bc,’U

B (2)

xMout — ||§:1 Z Qe nm (Vc,m + @c,nm)
meN(n)

where || is the concatenation operation for C' head attention. Following Shi et
al. (2021) [26], we also used a gated residual connection between layers to give

4 We drop the subscript for ease of notation here.
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an output of the graph transformer:

r, = W, x" + b,
B, = sigmoid (W [K™ut; rpy; X%t —1,]) (3)
x"ouvt = ReLU (LayerNorm ((1 — f,,) X" + B,1},))

The graph transformer’s output was directed into a conjunctive pooling mod-
ule [12]. This dual-stream architecture consists of a classification head and an
attention head. The classification head in a linear layer that generates instance
logits ¥;, while the attention head is responsible for generating an attention score
for each instance of the node embedding, enabling a weighted summary of its
features based on their importance. The attention scores for each time point, n,
were computed according to the following:

a, = sigmoid (Wy - tanh (Wx"™°“* + by) + ba), (4)

where W, € R8%256 agnd W, € R'*® are trainable weight matrices with cor-
responding bias vectors, by € R® and by € R!, and tanh(:) is the hyperbolic
tangent function.

By maintaining parallel processing, the model leverages the strengths of
instance-level classification accuracy and attention-driven importance weight-
ing. The final output was produced by scaling the instance logits ¥ using the
attention scores a:

t
Y = Zajgj. (5)
j=1

Interpretations for each time point are class-specific importance measures defined
as the multiplication of the instance attention and logit.

3 Experiments

We compared MorphoSense to other multivariate TSC models that handle vari-
able length time series without explicit padding or cropping (LSTM). We also
evaluated against a transformer-based MIL technique typically applied to whole
slide image classification (TransMIL [25]) and another graph transformer-based
MIL model (GTP [32]). TransMIL utilises variable length positional encoding
through PPEG, and GTP relies on graph structure to incorporate temporal in-
formation. Other popular MIL models such as DSMIL [20] and ABMIL [18] were
left out of our analysis due to the permutation invariance of bags under their
framework - a violation of the temporal ordering of time series. We use the same
features for all models and the same graph structure for GTP.

We evaluated our model’s interpretability using the process described in [13].
This process uses two metrics: Area Over the Perturbation Curve to Random
(AOPCR) and Normalised Discounted Cumulative Gain at n (NDCG@n). Both
approaches are ranking metrics rather than actual interpretation values. AOPCR
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evaluates interpretability without time point labels, and NDCG@n uses time
point labels. We evaluated classification accuracy regarding balanced class ac-
curacy (ACC) and area under the receiver operating curve (AUC). For all ex-
periments, we ran 10-fold cross-validation and reported the mean and standard
deviation of the metrics.

4 Datasets

We assessed MorphSense on three distinct datasets.

Synthetic dynamic shapes: To evaluate the ability of MorphoSense to pro-
duce high-quality interpretations, we created a synthetic dataset of 3D shapes
morphing into other shapes. This dataset consists of 3 classes defined by their
shape changes. Each time point is a point cloud representation of a 3D shape,
and each time series varies in length (between 15 and 70 time points). We gen-
erate spheres with radii between 0.8 and 1.2 and inject one of three shapes
(torus, cube, cylinder) at various time points. We then linearly interpolate be-
tween a source sphere and the target shape and back to a sphere. This inter-
polation happens over varying lengths in the dataset. The whole transition is
labelled as class-specific instances. The important instances of each time series
are known. Therefore, we can directly evaluate the interpretability of each model.
The dataset consisted of 1000 point cloud sequences.

Live drug-treated cancer cells: We used MorphoSense to learn the small
molecule perturbation applied to live melanoma cancer cells. We performed one-
vs-the-rest classification for four drugs: Blebbistatin (myosin inhibitor), CK666
(actin polymerisation inhibitor), Palbociclib (CDK4/CDKG6 inhibitor), and PF228
(Focal adhesion kinase (FAK) inhibitor) and report the average results across
all models. This dataset consisted of 442 sequences of 3D cells ranging from a
time series length of 5 to 116.

Migrating T-cells: Finally, we applied our model to classify intravital two-
photon microscopy images of T-cells migrating in the popliteal lymph node (LM),
submandibular salivary gland (SMG), and skin [23]. Briefly, Medyukhina et al.
(2020) [23] segmented and tracked T-cells in 3D and obtained cell surface meshes
for each cell for each time point. The dataset consisted of 869 point cloud se-
quences ranging from 5 to 75 time points per series. We extracted point clouds
from these surface meshes and fed these through our pipeline. We used a pre-
trained feature extractor trained on fixed WM266.4 3D melanoma cells.

5 Results

Synthetic dynamic shapes: We compared our model’s interpretability against
that of GTP and TransMIL. GTP uses GraphCAM, which propagates trans-
former attention maps and class relevance scores through the network and then
reconstructs the class activation map using the graph’s adjacency matrix. In
TransMIL, the attention coefficients correspond to the class token of the trans-
former attention matrix. MorphoSense, which uses the weighted instance logits



8 M. De Vries et al.

Table 1. Inperpretability and classification results. Left: Interpretability results
(AOPCR and NDCGn) on Synthetic Dynamic Shapes dataset. LSTM does not
output interpretation. Middle: Classification results of different on drug-treated can-
cer cells (Melanoma). Right: Classification results on the T-cells dataset.

Dynamic Shapes Melanoma T-cells
Method AOPCR(T) NDCG@n(1) ACC(1) AUC(T) ACC(1) AUC(T)

LSTM - - 0.7610.078 0.5440.00a 0.7710.031 0.8770.032
TransMIL 0.639 0.2770.256  0.7350.057 0.7050.073 0.7860.021 0.9180.013
GTP 2.236 0.7430.330  0.7450.059 0.6990.058 0.7670.015 0.9110.010

MorphoSense  5.992 0.8530.110  0.7640.056 0.7350.066 0.7930.028 0.9120.017

from the conjunctive pooling module, outperformed all models in both inter-
pretability metrics.

Biological cells: MorphoSense outperformed all models regarding ACC on
both datasets and AUC on the melanoma dataset. While TransMIL outper-
formed MorphoSense in AUC on the migrating T-cell dataset by a small mar-
gin, it falls short in terms of interpretability. Fig. 2. shows example qualitative
interpretations for each drug and how these relate to classical shape features
(see supplementary material). Interestingly, the MorphoSense model successfully
identified salient morphological changes in drug-induced cells. For example, the
model assigns high importance to transforming cells from spherical shapes to
more protrusive forms, a change induced by Blebbistatin [11,10]. The model
also identified that CK666 [24], which inhibits actin polymerisation [16], results
in cells adopting rounder shapes due to their diminished capacity to form pro-
trusions [11]. PF228 inhibits focal adhesion kinase (FAK), and perturbations
that increase FAK activity have been shown to promote flatter cell shapes [5].
Palbociclib is a selective cyclin-dependent kinase (CDK)4/6 inhibitor shown to
increase size in 2D cell cultures [27].

6 Conclusion

To our knowledge, MorphoSense is the first to utilise MIL for interpretable 4D
phenotypic profiling. We have applied our model and several others to one syn-
thetic dataset of shape dynamics and two biological datasets of migrating T-cells
and cancer cells following treatment by small molecules targeting disease-related
cell processes. Across all datasets, our model was superior in classification and in-
terpretability performance. Identifying universal characteristics of shape change
is difficult due to the limited number of publicly available 3D+time datasets
of cells. Future work will focus on deeper insights into the hallmark 3D shape
changes associated with drug treatment and validation on more datasets.
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