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Abstract. Weakly supervised whole slide image (WSI) classification
is challenging due to the lack of patch-level labels and high compu-
tational costs. State-of-the-art methods use self-supervised patch-wise
feature representations for multiple instance learning (MIL). Recently,
methods have been proposed to fine-tune the feature representation on
the downstream task using pseudo labeling, but mostly focusing on se-
lecting high-quality positive patches. In this paper, we propose to mine
hard negative samples during fine-tuning. This allows us to obtain bet-
ter feature representations and reduce the training cost. Furthermore,
we propose a novel patch-wise ranking loss in MIL to better exploit
these hard negative samples. Experiments on two public datasets demon-
strate the efficacy of these proposed ideas. Our codes are available at
https://github.com/winston52/HNM-WSI.
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1 Introduction

Histopathology image analysis serves as the gold standard for cancer diagnosis
and treatment [22,24,2]. Due to the large size of the WSI, the heterogeneity of
the tumor microenvironment, and the absence of patch-level labels, Multiple In-
stance Learning (MIL) [13] schemes are often applied to perform a prediction at
the whole slide level. In MIL, each slide is considered a bag. A slide is partitioned
into patches to create the instances within the bag. One challenge is that only
bag-level (i.e. slide-level) labels are available, but not instance-level labels. Spe-
cialized training algorithms have been proposed to learn to make instance-level
predictions and aggregate them for bag-level prediction [27,14,19].

Feature representation learning. The performance of MIL heavily relies on
feature representation of instances (patches). Due to the huge image size, end-
to-end learning is computationally infeasible. Earlier work used convolutional
neural networks (CNNs) pretrained on ImageNet to generate patch features [15].
These features are then used for downstream MIL. Recently, more advanced
self-supervised learning techniques such as SimCLR [9] and DINO [7] have been
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Fig. 1: Feature representation tuning. Previous methods [21,25] perform con-
trastive learning between top-ranked positive patches and all negative patches.
Our method (highlighted in red) selects hard negatives for supervised contrastive
learning.

applied to pretrain features using public histopathology image datasets. These
features are much more biologically relevant and deliver better performance when
combined with MIL [19,8,32,16].

Despite the strong performance of these features, one cannot help but won-
der whether they can be further tuned to better fit the downstream prediction
task. To this end, new methods [21,25] have been proposed to use supervised
contrastive learning to fine-tune the features. Patches are assigned pseudo-labels
using a weak patch classifier from the downstream MIL. Supervised contrastive
learning is carried out to ensure that patches of the same label are closer to each
other in the feature space, and patches of different labels are far away from each
other. However, these patch-level pseudo-labels can be noisy, and thus can derail
the contrastive learning, leading to deteriorated features. To address this chal-
lenge, it was proposed to rank all patches with positive pseudo-labels based on
model confidence, and select the top ones for learning. Meanwhile, since all neg-
ative slides only contain negative patches, we can just use these patches knowing
that they are truly negative patches.

Our contribution: hard negative sampling for patch representation
learning. In this paper, we question the design choice of these self-training
methods regarding negative sample selection. While it is true that all patches
from negative slides are true negative samples, they do not necessarily contribute
to learning equally. In particular, we hypothesize that some negative patches are
particularly useful in learning. To this end, we propose a novel hard sample
mining algorithm to find negative patches that are particularly close to positive
patches in feature representation. By focusing on these “hard” negative samples
during contrastive learning, we achieve much better patch features for the down-
stream MIL. Moreover, since we only use a fraction of the negative instances, we
are able to reduce the training time considerably. See Figure 1 for illustration.

Indeed, the learning power of these hard negative samples can be further
exploited in the downstream MIL. As a second technical contribution, we intro-
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duce a novel multiple instance ranking loss that pairwise compares the patch-
level classifier’s predictions on top positive samples and hard negative samples.
By ensuring that the classifier ranks positive and negative patches correctly in
terms of their “positiveness”, we improve the instance-level classifier and thus
the whole-slide-level prediction.

In practice, we perform feature representation tuning and MIL training it-
eratively to achieve superior performance. Extensive experiments on two public
datasets demonstrate the effectiveness of our proposed framework.

2 Related Work

Multiple instance learning in WSI analysis. Multiple Instance Learning
[13] (MIL) is a weakly supervised learning framework that can utilize coarse-
grained bag labels to train a model when fine-grained instance annotations are
not available. The MIL framework for WSI classification is divided into two
groups: instance-based and bag-based. The instance-based method first predicts
the probability of all instances and then aggregates these to obtain a bag pre-
diction using Mean Pooling or Max Pooling [6,31]. In contrast, the bag-based
method involves aggregating the embeddings of all instances into a single bag
embedding and then classifying it using a bag classifier. Most current bag-based
methods are Attention-based MIL [15,19,26] methods and ViT-based MIL [27,14]
methods. Various strategies have been proposed to find positive patches more
accurately [23,19,28]. In this paper, we mainly develop an effective and efficient
method by focusing on hard negative patches to improve the performance of the
WSI classification.

Self-training and pseudo labeling in WSI analysis. Self-training is a widely
used technique in semi-supervised learning [18,29,30]. The key idea is to generate
pseudo-labels of unlabeled data using a model trained with labeled data and
then train the model based on the combination of the labeled data and pseudo
labels. In weakly supervised WSI classification, Chen et al. [10] proposed a self-
training framework and the concept of pseudo labeling to extract the key regions
from WSIs. Liu et al. [21] proposed a self-paced framework to gradually improve
the accuracy of pseudo labels during the training process. However, existing
work mainly focuses on pseudo labels from positive slides. Instead of treating all
negative patches from negative slides equally as ground truth negative labels, we
intend to develop an efficient method to sample part of negative patches based
on the pseudo labels from negative slides.

Hard negative sample mining in WSI classification. Hard negative sam-
ple mining was first introduced in the object detection task [12], where the
main idea is to repeatedly bootstrap negative samples mistakenly classified as
false positives. In WSI analysis, Bejnordi et al. [3] was the first to enhance model
performance on breast cancer by mining difficult negative regions from the train-
ing samples. Furthermore, Li et al. [20] and Butke et al. [5] incorporated hard
negative sample mining methods into the MIL framework to improve the perfor-
mance of the WSI classification task by leveraging attention weights to identify
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Fig. 2: Overview of our hard negative sample mining framework: WSIs are cut
into patches. The encoder generates instance-level features which are aggregated
into bag-level features and a pseudo label is assigned to each instance. The
multiple instance ranking loss is employed to enhance the accuracy of the pseudo
labels. Finally, negative and positive patches are selected based on enhanced
pseudo labels to fine-tune the encoder and the process is repeated iteratively.

hard negative instances in false positive bags. Unlike these hard negative mining
methods that focus on training a better MIL aggregator, our method utilizes
these challenging negative samples to fine-tune the encoder, leading to improved
patch-level feature representation.

3 Method

MIL formulation. In the WSI classification task, we are given a dataset D
consisting of a set of WSIs X = {X1, X2, . . . , XN} and its corresponding set
of slide labels Y = {Y1, Y2, . . . , YN}. Because WSIs are huge size images, each
WSI is cut into non-overlapping smaller patches {xi,1, xi,2 . . . xi,ni

} where ni

represents the number of patches obtained from Xi. In the setting of MIL, each
WSI is considered as a bag, and all patches extracted from the WSI are con-
sidered as the instances of the bag. The bag label Yi ∈ {0, 1} and the instance
labels {yi,1, yi,2 . . . yi,ni} are unknown. A bag is labeled as negative only if all its
instances are negative, and is labeled positive otherwise.

Method overview. The performance of a WSI classifier is tied to its instance
classification performance. The main challenge is the lack of instance-level la-
bels. Additionally, with gigapixel WSIs, the number of instances is huge (in
the order of hundreds of thousands for the Camelyon16 [4] dataset), which nega-
tively affects the training time. To improve the accuracy of instance pseudo-label
prediction and training efficiency, we propose a negative sampling enhanced self-
training MIL framework. Figure 2 provides an overview of our proposed method.
Our approach is comprised of two main components. Firstly, we incorporate a
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novel multiple instance ranking loss during the training of the aggregator. Sub-
sequently, we design a more efficient strategy for negative patch sampling to
fine-tune the encoder. We will next describe these components in more details.

Multiple instance ranking loss. Let Xi = {xi,1, xi,2 . . . xi,ni
} represents a

bag (WSI) and xij is the j
th instance in this bag. After extracting features using

encoder f , each patch is projected into instance embedding hij = f(xij) ∈ RL×1.
An instance classifier converts this embedding into a prediction score sij =
ϕins(hij), sij ∈ (0, 1), where ϕins are the weights of the classifier. For the positive

bag, the instance-level predicted scores are denoted as Ŝp
i = {ŝpi,1, ŝ

p
i,2 . . . ŝ

p
i,ni
},

and for the negative bag, the instance-level predicted scores are denoted as Ŝn
i =

{ŝni,1, ŝni,2 . . . ŝni,ni
}. The instance with the highest prediction score in the positive

bag is most likely to be the true positive patch, and the instance with the highest
prediction score in the negative bag is the one most similar to a positive patch but
is actually negative. This negative instance is considered as a hard instance. To
push the scores of positive and negative instances far apart, we propose a novel
multiple instance ranking loss that aims to maximize the difference between
the sum of scores of the top K instances in the positive and negative bags,
respectively. The hinge-based formula of our multiple instance ranking loss is:

LMIRank = max

(
0, 1− 1

K

∑
topK

ŝpi,k +
1

K

∑
topK

ŝni,k

)
(1)

Instance aggregator. To classify the WSI, similar to [19], we first compute
the bag embedding as a weighted sum of all instance embeddings. The WSI
prediction is then the average of the bag classifier and the instance classifier:

Ŷi =
1

2

(
ϕinshm + ϕbag

∑
i

U(hi, hm)hi

)
(2)

where ϕins and ϕbag are the weights of the instance and bag classifiers, respec-
tively. hm is the embedding of the instance with the highest score and U(hi, hm)
is the distance between hm and an instance hi. Finally, the complete loss function
for training the MIL aggregator is given by:

LMIL = wb ∗ LCE(Ŷi, Yi) + wr ∗ LMIRank (3)

where LCE is the cross-entropy loss, wb and wr are the weights for the cross-
entropy loss and the multiple instance ranking loss, respectively.

Negative sampling enhanced contrastive learning. After each iteration
of training the MIL aggregator, we use the trained model to obtain patch-
level pseudo labels to fine-tune the encoder. Fine-tuning enables the encoder
to learn discriminative representations by pulling together the representations
of instances sharing the same pseudo label and pushing apart the representa-
tions of instances with different pseudo labels. Let x be the anchor instance, xs

is an instance selected from set Sx with the same pseudo label as x, and xd is
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an instance selected from set Dx with a pseudo label different from x. We use
supervised contrastive learning as in [17,21] to fine-tune the encoder:

LsupCL(x) =
1

|Sx|
∑

xs∈Sx

− log
sim(x, xs)∑

xs∈Sx
sim(x, xs) +

∑
xd∈Dx

sim(x, xd)
(4)

The similarity score sim(x, x′) is defined as exp (f(x) · f(x′)/τ), where f is an
encoder, and τ is a temperature parameter. The construction of Sx and Dx is
determined by the pseudo label of x. Let Xpos represent the bank of positive
instances, and Xneg represent the bank of negative instances. The construction
of Sx and Dx is as follows:

If x ∈ Xpos:

{
Sx ← Xpos

Dx ← Xneg

, If x ∈ Xneg:

{
Sx ← Xneg

Dx ← Xpos

(5)

where ← represents random sampling from the instance bank. This means that
if x is sampled from the positive instance bank Xpos, then Sx and Dx are con-
structed by sampling from Xpos and Xneg, respectively. Similarly, if x is sam-
pled from Xneg, then Sx and Dx are constructed by sampling from Xneg and
Xpos, respectively. Existing methods typically construct Xpos and Xneg as fol-
lows: Xpos is the collection of the top rp% of positive instances above a preset
threshold. Xneg is the collection of all instances in negative slides since, by defi-
nition, negative bags only contain negative instances. However, this approach is
time-consuming and inefficient for fine-tuning because it includes too many easy
negative instances in Xneg. Instead, we propose to use hard negative sampling,
i.e., construct Xneg from the collection of negative instances with the top rn%
prediction scores. In this way, training efficiency can be significantly improved
by selecting only a fraction of hard negative instances for fine-tuning.

4 Experiment

Datasets. We conduct experiments on two public datasets: Camelyon16 [4] and
TCGA-LUAD mutation [1]. Camelyon16 is designed for detecting metastases in
lymph node tissue slides. It contains 270 normal slides and 129 tumor slides.
The TCGA-LUAD mutation dataset is aimed at detecting gene mutations. We
selected four genes related to treatment options: EGFR, KRAS, STK11, and
TP53 [21,11]. The dataset comprises 607 WSIs, and the WSI labels indicate
whether the corresponding gene is expressed in the slides.

Experiments setup and evaluation metrics. In the WSI preprocessing
stage, we cut the slides into non-overlapping patches of size 224×224. For the
Camelyon16 dataset, we obtained 0.25 million patches with 5× magnification.
For the TCGA-LUAD mutation dataset, we got 0.52 million patches with 10×
magnification. We utilize the pre-trained ResNet-18 encoder provided by [19]
to extract features for the Camelyon16 and TCGA-LUAD mutation datasets.
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Table 1: Main results on Camelyon16 and TCGA-LUAD mutation datasets.
Camelyon16 TCGA-LUAD mutation

EGFR KRAS STK11 TP53
Method ACC AUC AUC AUC AUC AUC

Max-pooling 0.8295 0.8641 0.6643 0.5746 0.6702 0.6109
ABMIL[15] 0.8450 0.8653 0.6848 0.5994 0.6784 0.6520
DSMIL[19] 0.8837 0.9095 0.6956 0.6026 0.6885 0.6344
Its2CLR[21] 0.9070 0.9465 0.7103 0.6135 0.7111 0.6703
Ours 0.9302 0.9604 0.7235 0.6473 0.7396 0.7071

We evaluate the performance on WSI classification on Camelyon16 and TCGA-
LUAD mutation datasets, in addition to patch-wise classification on Camelyon16
dataset. We report accuracy (ACC) and area under the curve (AUC) evaluation
metrics. For Camelyon16 dataset, we reported the results of the official testing
set. For TCGA-LUAD mutation dataset, we conducted 5-fold cross-validation
on the 607 slides, and the mean and standard deviation of performance metrics
are reported. The mean results are presented in Table 1, the detailed results
with standard deviation are provided in Tabel 4 in the supplementary material.

Implementation details. When training the MIL aggregator, we follow the
settings in [19]. The MIL aggregator was trained for 350 epochs. We employ
Adam optimizer with a learning rate of 0.0001. For the multiple instance ranking
loss, we set K to 10. The weight of cross-entropy loss wb and ranking loss wr are
configured to 0.5 and 0.1, respectively. For both the Camelyon16 and TCGA-
LUAD mutation datasets, we set the parameters for sampling pseudo labels,
rp and rn, to 0.2 and 0.05, respectively. The fine-tuning phase was set to 25
epochs. For these hyperparameters, we experiment with different values and
select the ones best performing on the validation set. All model training and
testing experiments were conducted on Nvidia A5000 GPU.

Quantitative results. Table 1 shows the comparison result on Camelyon16
and TCGA-LUAD mutation datasets. For the Camelyon16 dataset, compared
with the classic MIL and self-traning methods, our method achieved the best
performance, with an ACC of 0.9302 and an AUC of 0.9604. Furthermore, we also
observe improved instance-level prediction accuracy (See Table 2 in the ablation
study section). For the TCGA-LUADmutation dataset, our method achieved the
best AUC results over four genes: EGFR reached 0.7235, KRAS reached 0.6473,
STK11 reached 0.7396, and TP53 reached 0.7071. The evaluation results show
the effectiveness of our proposed framework in bag and instance predictions.

Qualitative results. Figure 3 compares the instance-level prediction in tumor-
positive WSIs from the Camelyon16 dataset. Compared to the DSMIL and
Its2CLR methods, the instance score maps from our method align best with the
ground truth maps. The prediction score for the top negative instances gradu-
ally decreases as training progresses. This demonstrates qualitatively that our
method enhances the accuracy of instance predictions. The magnified version of
Figure 3 is provided in the supplementary materials (Figure 4).



8 W. Huang et al.

Fig. 3: Visualization of instance prediction probabilities on the Camelyon16
dataset. Patches with probabilities below 0.3 are rendered transparent.

Table 2: Ablation study for our proposed multiple instance ranking loss (MI
ranking) with WSI and instance-wise evaluations on Camelyon16 dataset.

Instances WSIs
Method ACC AUC AUPRC ACC AUC

DSMIL 0.8941 0.9118 0.8876 0.8837 0.9095
DSMIL + MI ranking 0.9007 0.9176 0.8931 0.8914 0.9151

ItS2CLR 0.9287 0.9478 0.8974 0.9070 0.9465
ItS2CLR + MI ranking 0.9291 0.9496 0.8987 0.9147 0.9483

Ours(w/o MI ranking) 0.9341 0.9598 0.9065 0.9225 0.9583
Ours 0.9374 0.9619 0.9123 0.9302 0.9604

Ablation study: ranking loss. To demonstrate the effectiveness of our mul-
tiple instance ranking loss (MI ranking loss), we evaluated the bag-level and
instance-level performance on the Camelyon16 dataset before and after integrat-
ing our proposed loss into various methods. Table 2 illustrates that incorporating
our ranking loss significantly enhances prediction accuracy at both the instance
and bag levels for all methods.

Hard negative sample size and training time. We conducted experiments
with negative sampling rates of 2%, 5%, 10%, 20%, and 100%. Table 3 illustrates
that the optimal performance is achieved at a negative sample ratio of 5% for
fine-tuning. Furthermore, we measured the training time per iteration, i.e. the
time for training the aggregator, updating the pseudo labels, and fine-tuning the
encoder. When the negative sampling rate is 100%, the iteration time is simi-
lar to ItS2CLR since fine-tuning dominates the overall training time. However,
with our proposed negative sampling strategy, the training time is significantly
reduced (around 70% to 80% less time) compared to the ItS2CLR method and
with improved performance. These findings demonstrate that our approach can
simultaneously enhance performance and training efficiency.



Hard Negative Sample Mining for Whole Slide Image Classification 9

Table 3: Ablation study on proportion of negative sample and training time.

Negative (%)
Camelyon16

Training Time
ACC AUC

2% 90.7 93.12 33 min / iteration
5% 93.02 96.04 39 min / iteration
10% 92.25 95.76 46 min / iteration
20% 91.47 95.01 72 min / iteration
100% 91.47 94.83 240 min / iteration

5 Conclusion

This work introduces a negative sampling enhanced framework designed to im-
prove performance and training efficiency for self-training frameworks applied to
WSI classification tasks. This framework consists of two components: multiple
instance ranking loss and negative sampling strategy. The ranking loss enhances
instance-level prediction accuracy by differentiating between positive and nega-
tive instances, and the negative instance sampling strategy selectively integrates
challenging negative samples into the fine-tuning process. Extensive experiments
validate the effectiveness and efficiency of our proposed framework.
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