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Abstract. Existing machine learning methods for brain image analy-
sis are mostly based on supervised training. They require large labeled
datasets, which can be costly or impossible to obtain. Moreover, the
trained models are useful only for the narrow task defined by the labels.
In this work, we developed a new method, based on the concept of foun-
dation models, to overcome these limitations. Our model is an attention-
based neural network that is trained using a novel self-supervised ap-
proach. Specifically, the model is trained to generate brain images in a
patch-wise manner, thereby learning the brain structure. To facilitate
learning of image details, we propose a new method that encodes high-
frequency information using convolutional kernels with random weights.
We trained our model on a pool of 10 public datasets. We then applied
the model on five independent datasets to perform segmentation, le-
sion detection, denoising, and brain age estimation. Results showed that
the foundation model achieved competitive or better results on all tasks,
while significantly reducing the required amount of labeled training data.
Our method enables leveraging large unlabeled neuroimaging datasets to
effectively address diverse brain image analysis tasks and reduce the time
and cost requirements of acquiring labels.
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1 Introduction

Existing machine learning methods for brain image analysis have three criti-
cal shortcomings: (1) They are mostly trained with supervised learning, which
requires large labeled datasets. It can be costly or impossible to collect such
datasets, for example for segmenting complex structures or detecting rare ab-
normalities. (2) Trained models are restricted to a narrowly-defined task. For
example, a model trained to detect stroke lesions may be useless for detecting
tumors. (3) They fail to leverage massive unlabeled neuroimaging datasets that
are becoming increasingly available. Therefore, the goal of this work is to develop
a new approach, based on foundation models, to overcome these limitations.
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1.1 Review of related works

Not-fully-supervised methods: There is much interest in unsupervised, self-
supervised, and related machine learning methods for medical image analysis
[11, 22, 23]. These methods can reduce/eliminate the need for labeled data. For
brain abnormality detection, as an example, prior unsupervised works include
reconstruction-based and representation-based methods [4, 10]. However, in gen-
eral, prior works have failed to perform as well as supervised methods [5, 31].

Foundation models: The central idea behind foundation models is to leverage
massive unlabeled data to develop powerful “general-purpose” models, which
can subsequently tackle a wide range of tasks [6, 46]. Foundation models are
trained using self-supervised techniques. They have become dominant in natural
language processing (NLP) and computer vision [12, 14] and offer important
advantages: (i) They do not require collecting and labeling a large dataset for
each new task. (ii) They can learn patterns that are not restricted by a specific
label information or tied to a specific task. (iii) They can have better performance
on rare events and corrupted or out-of-distribution data [30, 6].

Vision transformers and their limitations: Attention-based models such as
vision transformers have emerged as alternatives to CNNs for image analysis [13,
24]. They are superior in learning spatial correlations. However, they also have
drawbacks such as higher computational and memory requirements and lower
data efficiency. A limitation of these models that we consider in this work is that
they are not effective in learning high-frequency information [32, 2]. Hence, they
are not good at reconstructing sharp features, i.e., edges and texture, which can
impact the performance in image analysis tasks.

1.2 Contributions

(1) We propose a framework for developing foundation models for brain image
analysis. Our model is based on a transformer network that is trained in a self-
supervised manner to generate brain images in a patch-wise fashion, thereby
learning the detailed structure of brain images. Our novel training strategy is
based on auto-regressive prediction and random input masking, both applied at
the level of 3D patches. (2) To facilitate learning of high-frequency detail, we
propose a novel approach based on convolutional kernels with random weights.
(3) We train the model on 10 unlabeled datasets. We then apply the model on
five different tasks and show that it can achieve competitive or better results
than the state of the art while significantly reducing the required labeled data.

2 Methods

As shown in Fig. 1, our method consists of a transformer network that is trained
to generate brain images in a patch-wise fashion. It uses a set of 3D patches
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as the input context to predict an adjacent patch. This way, the model learns
the detailed structure of brain images. Our method is based on a simple but
powerful idea: normal brains are very similar. In other words, brain structure is
characterized by features (e.g., cortical foldings and subcortical structures) that
are similar across brains. Hence, a well-devised model can learn these structures
after being trained in a self-supervised manner on large datasets to generate
these images. In this sense, our approach follows the NLP foundation models
that are trained to predict the next word in text. The method works as follows:

1. Given an image, cubes of size D3 are extracted, where D is in voxels. The
cube is divided into patches of size d3, where d=D/n, resulting in n3 patches.

2. The corner patch (red in Fig. 1) is the prediction target. The remaining
n3 − 1 patches (yellow/orange in Fig. 1) constitute the input context, which
the model uses to predict the target. The input patches go through high-
frequency feature encoding (block F in Fig. 1), described further below.

3. Frequency encoding is followed by embedding into IRm, resulting in a se-
quence S of length n3−1, where each element is in IRm. Positional encoding
(P2 in Fig. 1) is added to S and then the elements of S are masked (i.e.,
removed) at random (block M). For positional encoding, we use fixed (i.e.,
non-learned) encodings as in standard transformers [43, 28]. For masking, we
remove each element independently with a probability p. This generates a
shorter sequence S∗ of length n∗.

4. The reduced sequence S∗ is passed to a network (T in Fig. 1), consisting of
Ktr transformer blocks with architecture similar to those in [20].

5. The output of the last transformer block goes through unmasking (U in Fig.
1). This simply restores the sequence length to n3 − 1 based on the same
masking pattern used to generate S∗. The masked elements are given a value
of 0 in this stage. The sequence is passed to Kfc fully-connected layers.

6. The output of the last fully connected layer is projected back to IRd3

and
reshaped (R in Fig. 1) to form the model’s prediction of the target patch.

High-frequency encoding: To address transformer’s limitation in modeling high-
frequency information, we encode this information using convolutional kernels
with random weights. Neural networks with random weights are highly effective
in extracting high-frequency information [35, 9]. Our aim is to design q kernels
{ki}i=1:q such that there is low redundancy among the feature maps computed
by the set. We first generate a much larger set of candidates {k∗i }i=1:Q, where
Q ≫ q, using the initialization method proposed in [15]. We apply {k∗i }i=1:Q on
some training images (x) to generate feature maps f∗

i (x) =k∗i ⊛ x. We quantify
the similarity between pairs of feature maps (f∗

i (x) and f∗
j (x)) using projection

weighted Canonical Correlation Analysis (pwCCA) [27], which we denote as ρij .
We select the subset of q kernels in a greedy manner: (step 1) We choose k1 to
be k∗1 ; (step 2) We choose k2 from {k∗i }i=2:Q such that ρ1i is the lowest, i.e., fi
is least similar to f1; (steps 3-q) We proceed in a similar manner, in every step
choosing the kernel that has the lowest maximum similarity (lowest maximum ρ)
compared with already-selected kernels. We used q = 8 and Q = 100. To avoid
increasing the dimensionality of the network input, we add the high-frequency
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Fig. 1. Proposed method. F: Frequency encoding block, where f1-fn denote different
frequency encodings and P1 is positional encoding. M: Positional encoding and mask-
ing, where P2 is positional encoding and B denotes a Bernoulli random process used
to mask the sequence. T: Vision transformer block. U: Unmasking. R: Reshaping.

features to the input. Specifically, if x is the input patch to the high-frequency
encoding block, the output is x+

∑
i P1iki ⊛ x, where P1 is fixed “positional”

encoding [43]. Note that these kernels are fixed and not updated during training.
Training approach: Our novel training approach is based on two dominant themes
in self-supervised learning [12, 1]: (1) Generative methods: they train the model
to predict masked/corrupted parts of the input. (2) Invariance-based methods:
they train the model to compute similar representations for different views of
the same input. As shown in Fig. 1, our method is based on auto-regressive
prediction of a missing (corner) patch; hence it follows a generative approach.
However, we also randomly mask the input patches, thereby giving the model
a different view of the input in each training iteration. Each element in S is
masked based on a Bernoulli distribution with probability p. The sequence is
unmasked to its original length before the fully connected layers, which serve as
the decoder section of the network. This approach forces the model to predict
the target patch based on a random selection of non-masked patches, which is
an invariance-based method and, additionally, serves as data augmentation.
Implementation: We trained our model on a pool of 10 public datasets [16, 29, 39,
8, 7, 33, 36, 40, 37, 41]. From these datasets, we used 11,000 structural MRI and
12,000 diffusion MRI (dMRI) volumes (acquired with different diffusion gradient
directions and strengths). Parameter settings were (see Fig. 1): D = 32, d= 8,
n=4, m=512, p=0.10, Ktr=5, Kfc=2. We used the ℓ1 norm of the difference
between the predicted and true voxel intensity of the target patch as the loss
function. During training, we sample cubes from random locations in the training
images and use them to optimize the model. On a test image, we start at one
corner of the image and proceed in a sliding-window fashion to predict the image.
To predict all patches that are close to the brain boundaries, we apply the model
in different directions (i.e., left/right, superior/inferior, and anterior/posterior).
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We trained the model on an Nvidia RTX A4500 GPU for 15 days. We used a
batch size of 10, SGD optimizer with a learning rate of 0.001.

Two factors may influence the model’s performance and generalizability: (i)
Resolution. We account for this factor by resampling all images to an isotropic
resolution of 1 mm. (ii) Intensity. We normalize each image such that the voxel
intensities have a mean of zero and standard deviation of one.

2.1 Experiments and evaluation strategy

In order to perform extrinsic evaluation [6] of our foundation model, we applied
the trained model on five different downstream tasks.
Task 1- Cortical plate segmentation. We used 100 T2 images and cortical
plate segmentations from the dHCP dataset [3]. We compared the foundation
model with nnU-Net [17] and a transformer model [21]. Both these competing
networks were trained in a fully-supervised manner.
Task 2- White matter tract segmentation. We used tract segmentation
data from the TractSeg project [45]. We focused on three tracts: corticospinal
tract (CST), middle cerebellar peduncle (MCP), and optic radiation (OPR). We
compared with nnU-Net, trained in a fully-supervised manner.
Task 3- dMRI denoising. We used dMRI scans of 100 subjects from the HCP
Development dataset [38]. Compared methods included: MPPCA [44], which is
a widely used method based on random matrix theory, and SDnDTI [42], which
is a recent deep learning method.
Task 4- Lesion detection. We used a dataset of 30 acute stroke patients [34].
We compared with an unsupervised technique based on variational autoencoders
(VAE) [5].
Task 5- Brain age estimation. We used 300 T2 images from the dHCP dataset
[3]. We compared our foundation model with a residual CNN (ResCNN) [19].

Fine-tuning and application to the target tasks: For segmentation (Tasks 1
and 2) and brain age estimation (Task 5), we fine-tuned the foundation model
on small numbers of labeled data from the target tasks (details given below).
For these tasks, the last layer of the network had to be modified to output
the correct size (For Tasks 1 and 2: IRd3×2 to represent the foreground and
background segmentation predictions; For Task 5: a scalar to represent the brain
age). For Tasks 1 and 2 we fine-tuned the model using a cross-entropy loss; for
Task 5 we fine-tuned with an ℓ2 loss. Fine-tuning was performed on the output
layer and fully-connected layers; we did not fine-tune the transformer blocks.
For Tasks 3 and 4 no fine-tuning was performed. For Task 3 (lesion detection)
we expected that the model trained on normal brain images would display large
reconstruction errors on brain lesions due to their deviation from normal brain
appearance. This is the common assumption in abnormality detection [4, 5].
Hence, we applied our model on a test image, computed the reconstruction error,
and used an empirical threshold of 1.50 to detect the lesions. For Task 4, following
a similar argument, we expected that the trained model learned to reconstruct
the true dMRI signal and not the random noise. This is the rationale behind
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deep learning-based image denoising [26, 25]. Hence, we applied the foundation
model on the test images and used the model predictions as the denoised image.

Evaluation metrics: For segmentation (Tasks 1 and 2) we used Dice Similarity
Coefficient (DSC), 95 percentile of the Hausdorff Distance (HD95), and Average
Symmetric Surface Distance (ASSD). We assessed the denoising performance
(Task 3) in two ways: (i) We used all 94 measurements in the b=1500 shell
to estimate a “ground truth” diffusion tensor. Then, we chose 15 measurements
from these 94 measurements, denoised them, estimated the diffusion tensor using
the denoised measurements, and computed fractional anisotropy (FA) and mean
diffusivity (MD) from the tensor and compared these with FA and MD computed
from the ground truth diffusion tensor. We denote the difference with the ground
truth as ∆FA and ∆MD. (ii) We divided the 186 dMRI measurements (in b=1500
and b=3000 shells) for each subject into two subsets of 93 measurements. We
used MSMT-CSD [18] to compute the fiber orientation distribution from each
subset and extracted the peak orientation direction for voxels in white matter.
We computed the angle between the peaks estimated from the two subsets,
denoted as ∆θ, as a measure of disagreement that is caused, in part, by residual
noise. For lesion detection (Task 4) we used F1 score. For Task 5, we computed
the error as the difference between the predicted age and the true age.

3 Results and discussion

Intrinsic evaluation [6]: As shown in Fig. 2, our model can accurately reconstruct
test images. A neuroradiologist reviewed pairs of true and reconstructed images
in a blind fashion and confirmed that the images were indistinguishable even
in minute details. Quantitatively, on 25 test images from the HCP dataset our
method achieved a voxel-wise reconstruction error of 0.098 ± 0.024, compared
with 0.132±0.026 for an auto-encoder model [4]. The difference was statistically
significant (p < 0.001, computed with a paired t-test) despite the fact that, unlike
the auto-encoder, our model did not use the target patch in its context input.

Fig. 2. Example test images reconstructed by the proposed method. Left: a T2 image
from the dHCP dataset; Right: a T1 image from the HCP dataset.

Task 1: With only 15 labeled training images in the target domain, our founda-
tion model achieved segmentation metrics on par with the competing methods
trained with 50-250 labeled images (example plot shown in Fig. 3(a)). Fig. 3(b)
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shows that the foundation model can achieve highly accurate segmentation with
few labeled images in the target domain. Paired t-tests for DSC, HD95, and
ASSD showed that for every number of labeled training images the foundation
model achieved significantly (p < 0.001) more accurate results than the two
compared methods. Moreover, DSC, HD95, and ASSD for the foundation model
fine-tuned with 15 labeled images were not different from the results achieved
by the two compared methods trained with 250 labeled images (p > 0.10).

Fig. 3. (a) Plots of DSC for our foundation model and competing methods on Task 1.
(b) Example results for the foundation model fine-tuned with 15 labeled images. (Green
voxels: correct segmentation, blue: over-segmentation, red: under-segmentation.)

Task 2: As Table 1 shows, with fewer labeled images in the target domain, the
foundation model achieved segmentation performance that was comparable with
or better than nnU-Net. For all three tracts and all three numbers of labeled
images, the foundation model achieved significantly higher DSC than nnU-Net
(p < 0.001, computed with paired t-tests). For all three tracts, the DSC achieved
with foundation model using 15 labeled images was not different (p > 0.10) than
that of nnU-Net with 50 labeled images. As shown in Fig. 4, the foundation
model can segment diverse and complex structures from few labeled images.

Table 1. DSC for the proposed method and nnU-Net on Task 2. m denotes the
number of labeled images used to fine-tune our foundation model and train nnU-Net.

m = 5 m = 15 m = 50
Method CST MCP OPR CST MCP OPR CST MCP OPR
Foundation model 0.871 0.831 0.786 0.874 0.840 0.797 0.882 0.851 0.810

nnU-Net 0.814 0.807 0.718 0.850 0.822 0.790 0.864 0.833 0.800

Task 3: Examples in Fig. 5 show that our foundation model, without any fine-
tuning on the target task data, can effectively reconstruct the genuine dMRI
signal while suppressing the noise. Table 2 shows that the foundation model
achieves comparable results with the other two methods. All three methods
achieved ∆FA and ∆MD that were statistically not different (p > 0.10). In terms
of ∆θ, our model achieved a statistically smaller error than SDnDTI (p < 0.001).
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Fig. 4. Example CST, MCP, and OPR
segmented with the foundation model fine-
tuned on 15 images. Green: correct; blue:
false positive; red: false negative. (Higher
magnification image in supp. material.)

Fig. 5. Example dMRI denoising results
by the foundation model in Task 3. Left:
noisy; right: denoised.(Higher magnifica-
tion image in supp. material.)

While our method was not fine-tuned on any training data from the target
dataset, SDnDTI was trained with 50 images.

Table 2. Results for Task 3.

Method δFA δMD δθ(◦)

Proposed 0.031 0.039 4.20

SDnDTI 0.031 0.041 4.29

MPPCA 0.030 0.039 4.24

Table 3. Mean absolute error (weeks) in
brain age estimation (Task 5).

Method m = 100 m = 200 m = 400

Proposed 0.87 0.86 0.86

ResCNN 1.03 0.90 0.89

Task 4: Foundation model achieved an F1 score of 0.688 compared with 0.605
for VAE. Wilcoxon signed-rank test showed that the difference was significant
(p < 0.001).
Task 5: Table 3 shows that our method fine-tuned with 100 images achieved a
lower prediction error than ResCNN trained with 400 images. With each of the
three different numbers of training images in the target domain, our method
achieved significantly (p < 0.001) lower prediction errors than ResCNN.
Ablation experiments: Extensive experiments showed a substantial positive im-
pact for the proposed high-frequency encoding approach. For example, disabling
the high-frequency encoding in Tasks 1 and 2 reduced the DSC achieved by the
method such that it was no longer significantly better than nnU-Net. Disabling
the high-frequency encoding in Task 4 reduced our F1 score to 0.550, making it
not significantly better than VAE.

4 Conclusions

Our results show that the proposed method can be used to develop foundation
models to address a wide range of brain image analysis tasks. The model size
and datasets used in this work were much smaller than in current foundation
models in NLP and computer vision. Therefore, we believe the results reported
in this paper will significantly improve by employing larger models and datasets.
Nonetheless, our results show that our method can lead to (1) improvements in
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the accuracy of machine learning methods in analyzing brain images; (2) reduc-
tion in labeled data requirements for building new machine learning methods
to address existing problems and emerging needs; (3) expansion of the range of
brain image analysis tasks that can be addressed with machine learning, such as
detection of rare abnormalities, where training data can be very scarce.
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