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Abstract. In this paper, we introduce IHRRB-DINO, an advanced model
designed to assist radiologists in effectively detecting breast masses in
mammogram images. This tool is specifically engineered to highlight
high-risk regions, enhancing the capability of radiologists in identify-
ing breast masses for more accurate and efficient assessments. Our ap-
proach incorporates a novel technique that employs Data-Driven In-
stance Noise (DINO) for Object Localization, which significantly im-
proves breast mass localization. This method is augmented by data aug-
mentation using instance-level noise during the training phase, focusing
on refining the model’s proficiency in precisely localizing breast masses in
mammographic images. Rigorous testing and validation conducted on the
BI-RADS dataset using our model, especially with the Swin-L backbone,
have demonstrated promising results. We achieved an Average Precision
(AP) of 46.96, indicating a substantial improvement in the accuracy and
consistency of breast cancer (BC) detection and localization. These re-
sults underscore the potential of IHRRB-DINO in contributing to the
advancements in computer-aided diagnosis systems for breast cancer,
marking a significant stride in the field of medical imaging technology.

Keywords: Breast Cancer Detection · Object Localization · Data-Driven
Instance Noise (DINO) · Transformer.

1 Introduction

Breast cancer continues to pose one of the most significant challenges in public
health, standing as the foremost cause of cancer-related deaths among women
across the globe. Its prevalence, particularly in the United States, as the most

⋆ Equal contribution.
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common cancer type among women, highlights an urgent need for effective early
detection and intervention methods. The criticality of this issue is accentuated
by the pivotal role of early detection in reducing mortality rates. Techniques
such as mammography play a vital role in this regard, enabling the initiation
of treatments at a stage where the cancer is most amenable to management
and expanding the range of possible therapeutic options. This early intervention
is key to enhancing patient outcomes and survival rates[9, 15]. The American
College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS)
stratifies breast density into four precise categories, wherein elevated categories
are associated with a heightened risk of breast cancer[5, 2]. Figure 1 illustrates
samples of the dataset.

Fig. 1: Examples of the Dataset.

The application of deep learning (DL) models has markedly transformed
medical diagnostics and screening, most notably in the detection and risk predic-
tion of breast cancer [9, 15]. Recent advancements have leveraged computational
methodologies to enhance the precision and efficacy of breast cancer screening
protocols. Numerous studies [13, 12, 17, 19] have contributed to this domain by
employing DL models for both the identification of present cancerous lesions and
the projection of future risk [20, 1].

The advent of Vision Transformers (ViTs) [18] has notably revolutionized the
field of medical imaging and diagnostics, challenging the erstwhile preeminence
of Convolutional Neural Networks (CNNs) by adopting self-attention mecha-
nisms for image analysis [4]. This technique enables an exhaustive evaluation of
spatial relationships, which are pivotal in the accurate detection of breast can-
cer, thereby significantly advancing diagnostic accuracy and improving patient
outcomes. ViTs herald a departure from the constraints associated with CNNs,
augmenting the detection and diagnosis capabilities for breast cancer through
superior pattern recognition competencies.

This progress has the potential to redefine the standards for breast cancer
screening and diagnosis, offering a more sophisticated and advanced method
for identifying cancers at their earliest stages. This research paper explores the
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impact of Vision Transformers in breast cancer detection AND localization, com-
paring their effectiveness with traditional CNN-based methods. Through a com-
prehensive analysis of existing methodologies, this study aims to clear the future
direction for using deep learning innovations to tackle one of the most urgent
health challenges. The goal of this research is to contribute to worldwide efforts
to lessen the impact of breast cancer and improve the success of early detection
strategies.

2 Method

In our study, we developed an Innovative end-to-end Vision Transformer model
specifically customized for the Detection of Breast Cancer. Our architecture
comprises four key components: a backbone, a multi-layer Transformer encoder,
a multi-layer Transformer decoder, and multiple prediction heads. This design
allows for efficient and precise detection of breast cancer signatures in medical
imaging, as shown in Figure 2

Fig. 2: Comprehensive Visualization of the Identifying High-Risk Regions of
Breast Masses in Mammogram Images

2.1 Vision Tranmsformer

Vision Transformers (ViTs), as proposed in several key studies like [18, 4, 10],
have significantly transformed the way visual data is processed. These models
approach image analysis by breaking down images into a sequence of patches,
which allows for the effective capture of long-range dependencies within the
image. This is primarily achieved through the use of self-attention mechanisms,
a concept further elaborated by P Shaw[16].
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For a given input image, denoted as x ∈ RH×W×C , where H, W , and C
represent the height, width, and channel count respectively, the image is divided
into N patches. Each patch is of dimensions P ×P ×C. These patches are then
linearly embedded and processed through the attention mechanism of the trans-
former model. Vision Transformers employ a multi-head attention mechanism,
enabling the model to simultaneously focus on different segments of the input
data from multiple representation subspaces.

In terms of the mathematical formulation, given the embedded patch repre-
sentations e ∈ RN×D, the attention mechanism for a single head is described by
the following equation:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (1)

In this equation, Q, K, and V represent the query, key, and value matrices,
respectively. These are derived from the embedded patch representations. The
term dk denotes the dimensionality of the key. After computing the attention
for each head, the outputs are then combined as follows:

MultiHead(Q,K,V) = Concat(head1, ...,headH)WO, (2)

In this multi-head attention formulation, headi is defined as Attention(QWQ
i ,

KWK
i ,VWV

i ), where WQ
i , WK

i , and WV
i are the projection matrices for the

i-th head. WO is the output projection matrix. This structure allows Vision
Transformers to effectively process visual data by focusing on different aspects
of the input through various attention heads.

2.2 Model

The DINO model leverages a sophisticated architecture designed for breast can-
cer detection, incorporating a multi-layer Transformer[18] encoder and decoder
alongside a backbone and multiple prediction heads. This setup enables the
extraction of multi-scale features from images using advanced networks like
ResNet[6] or Swin Transformer[10], which are then enhanced through a novel
mixed query selection strategy. This strategy introduces deformable attention[24]
to refine anchor boxes and classification outcomes. A crucial aspect of this model
is the introduction of the Contrastive Denoising (CDN) training approach, en-
hancing model discrimination by handling hard negative samples.

The CDN approach is pivotal, defined by two hyper-parameters, λ1 and λ2,
which control the noise scale for positive and negative queries, respectively. Posi-
tive queries, within a noise scale smaller than λ1, aim to reconstruct correspond-
ing ground truth boxes, while negative queries, within a noise scale between
λ1 and λ2, predict "no object". This bifurcation is critical for improving the
model’s accuracy by teaching it to reject irrelevant anchors, detailed through
the equation:
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ATD(k) =
1

k

∑
topK

{∥b0 − a0∥1, ∥b1 − a1∥1, ..., ∥bN−1 − aN−1∥1} ,

where ∥bi − ai∥1 represents the L1 distance between the ground truth box bi
and its corresponding anchor ai, emphasizing the model’s efficiency in selecting
quality anchors by minimizing confusion and duplicate predictions.

We also use look forward twice method innovates by allowing the parameters
of a given layer (layer i) to be updated not only based on the losses of that
layer but also incorporating the losses from the subsequent layer (layer i + 1).
This bidirectional flow of gradient information ensures that the refinement of
a predicted bounding box (bipred) is informed by both the quality of the initial
bounding box (bi−1) and the predicted box offset (∆bi), thereby enhancing the
precision of the model’s predictions.

Given an input box bi−1 for the i-th layer, we obtain the final prediction box
bipred by the following process:

∆bi = Layeri(bi−1), b′i = Update(bi−1, ∆bi), (3)

bi = Detach(b′i), bipred = Update(b′i−1, ∆bi), (4)

where b′i is the undetached version of bi. The term Update(·, ·) is a function
that refines the box bi−1 by the predicted box offset ∆bi. This approach, termed
as look forward twice, allows for the parameters of layer i to be influenced by the
losses of both layer i and layer i+ 1.

The architecture and operational flow of our proposed model are illustrated
in Figure 3, showcasing the integration of advanced deep learning techniques for
enhanced breast cancer detection.

Fig. 3: The architecture of the proposed model for breast cancer detection.
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3 Experiments and Results

3.1 Dataset and Setup

In our study, we curated a dataset consisting of 12,476 mammographic images,
meticulously processed according to BI-RADS standards, and prepared for ma-
chine learning applications by expert radiologists who performed data cleaning
and Region of Interest (ROI) extraction. We split this dataset into training
90%(11,228 images) and validation 10% (1,248 images) sets to facilitate a com-
prehensive training regime. During the fine-tuning stage, image sizes were aug-
mented by 1.5 times their original dimensions to enhance the model’s ability to
recognize detailed features. Our model’s training was optimized using an initial
learning rate of 1 × 10−4 and the AdamW[7, 11] optimizer, with a weight de-
cay also set to 1 × 10−4. For loss functions, we employed L1 and Generalized
Intersection over Union (GIOU)[14] losses for box regression, along with focal
loss (with α = 0.25, γ = 2) for classification, aiming to refine the precision of
bounding box predictions and improve classification accuracy.

The evaluation of our model’s performance was conducted using the Average
Precision (AP) metric across various Intersection over Union (IoU) thresholds
and object scales, providing insights into the model’s predictive accuracy and its
capability in handling objects of varying sizes. Implementation was conducted
using PyTorch on dual NVIDIA GeForce A40 GPUs with 100GB memory each.

Model Backbone Scale IOU
20 30 40 50 60 70 80 Avg

IHRRB-DINO
Resnet50 4 60.0 58.7 56.9 54.8 50.7 37.0 19.0 42.55
Resnet50 5 58.3 56.9 55.5 53.7 49.5 37.7 21.9 42.04
Swin-L 4 63.2 62.4 61.1 59.5 56.4 46.3 22.6 46.96

Table 1: Localization performance at different IoU thresholds

3.2 Localization Performance at Different IoU Thresholds

Table 1 presents a detailed analysis of the IHRRB-DINO model using different
backbones across a different range of IoU thresholds, highlighting the ability to
localize breast cancers with varying degrees of precision. The model’s perfor-
mance with the Swin-L[10] backbone at a scale of 4 distinguished significantly,
achieving the highest average IoU score of 46.96. This is notably superior to
the same model utilizing a ResNet50 backbone, where the highest average IoU
attained is 42.55. The substantial difference in the scores, particularly at higher
IoU thresholds such as 70, 80, and 90, emphasizes the Swin-L backbone’s effec-
tiveness in accurately delineating breast masses in mammographic images. For
instance, at an IoU threshold of 80, the Swin-L backbone achieves a score of
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22.6 compared to only 19.0 and 21.9 with the ResNet50 backbone, illustrating
its superior precision in high-risk region identification.

The model’s robust performance across a spectrum of IoU thresholds high-
lights its potential clinical utility. High accuracy in localizing breast masses is
crucial in clinical settings, where precise identification of high-risk regions can
significantly impact diagnostic decisions and treatment planning. The IHRRB-
DINO model, particularly with the Swin-L backbone, appears to offer the needed
precision for effective clinical application. as shown in Figure 4

Fig. 4: Examples of Our Proposed IHRRB-DINO Model Output.

3.3 Localization Performance Across Different Models

Our advanced breast cancer detection model, IHRRB-DINO, has undergone rig-
orous testing using a comprehensively curated dataset. In comparison to pre-
vailing state-of-the-art techniques, including well-established frameworks like
ResNet50 and VGG16, our model consistently outperforms them. Even when
these traditional methods are enhanced with sophisticated techniques such as
Class Activation Mapping (CAM) [23], Heatmap-based Anomaly Segmentation
(HAS) [8], Self-Produced Guidance (SPG) [22], Adversarial Discriminative Lo-
calization (ADL) [3], and Anomaly Detection with Localization (ACOL)[21].

Table 2 extends the analysis to compare the IHRRB-DINO model with other
models like CAM, HAS, ACOL, and ADL, using various backbones. Notably,
IHRRB-DINO with a Swin-L backbone significantly outperforms other models,
particularly at higher IoU thresholds, which is critical for accurate and reliable
cancer detection. For example, at an IoU threshold of 60, the IHRRB-DINO
model scores 56.4, surpassing the CAM model with Resnet50 (21.09%), VGG-
16 (11.84%), and Inception v3 (5.21%). When we look at how well different
models perform at an IoU threshold of 80, it is clear that the IHRRB-DINO
model is doing something right. It manages to score 46.96%, while most other
models do not even get on the scoreboard. This tells us that the IHRRB-DINO
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model is getting better at spotting and pinpointing the location of breast can-
cers. The IHRRB-DINO model, which uses the Swin-L backbone, is showing
some impressive results at higher IoU thresholds. For instance, at an IoU of 60,
our model scores 56.4%. This score tells us that our model is good at pinpoint-
ing the exact location of breast cancers, which is super important for detecting
them accurately. This is a big step up from the next best model, ADL with
Resnet50, which only scores 24.64% at the same IoU level. And even when the
IoU thresholds get tougher, like 80, IHRRB-DINO still scores 22.6%, showing its
precision. In real-world terms, this level of accuracy can make a big difference
in catching breast cancer early and planning treatment, which can improve the
patient’s chances of recovery. The fact that IHRRB-DINO can keep up its high
performance at IoU thresholds is really important for doctors. In breast cancer
screening, it’s just as important to catch small or early-stage tumors as it is to
identify larger ones. The models strong performance across different IoU thresh-
olds suggests it could be really useful in a variety of situations, from catching
cancer early to dealing with more advanced cases.

Model Backbone IOU
20 30 40 50 60 70 80 Avg

CAM
Resnet50 58.29 46.68 37.91 29.85 21.09 9.47 1.65 29.28
VGG-16 54.97 40.75 29.62 21.09 11.84 4.73 1.42 23.49

Inception v3 48.10 31.75 19.66 9.95 5.21 2.13 0.23 16.72

HAS
Resnet50 18.00 10.66 9.00 6.39 3.79 1.18 0.23 7.03
VGG-16 25.5 15.43 10.28 5.65 5.01 2.82 0.57 9.32

Inception v3 2.13 0.94 0.47 0.23 0.23 0.23 0.0 0.61

SPG
Resnet50 28.87 21.72 14.25 9.45 5.40 1.23 0.0 11.56
VGG-16 48.58 29.89 20.00 9.69 3.15 0.84 0.0 16.02

Inception v3 30.42 20.13 9.67 5.87 2.14 0.54 0.0 9.82

ACOL
Resnet50 31.56 25.11 19.43 12.55 8.53 4.02 0.94 14.59
VGG-16 30.46 20.68 13.34 10.04 6.18 2.13 0.56 11.90

Inception v3 4.97 3.08 1.89 1.18 0.71 0.23 0.23 1.75

ADL
Resnet50 68.72 55.45 44.31 33.64 24.64 14.45 5.68 35.27
VGG-16 43.60 24.17 12.08 5.92 2.13 0.94 0.0 12.70

Inception v3 33.64 16.82 9.00 3.31 1.18 2.23 2.23 9.77
IHRRB-DINO Swin-L 63.2 62.4 61.1 59.5 56.4 46.3 22.6 46.96

Table 2: Localization performance at different IoU thresholds

4 Conclusion

In conclusion, this study introduces the IHRRB-DINO model, a new approach
for the detection and localization of breast masses in mammogram images. Lever-
aging the advanced capabilities of ViTs, particularly with the Swin-L backbone,
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our model surpasses existing methods in high-risk areas in breast tissue. The rig-
orous testing we conducted shows that IHRRB-DINO outperforms traditional
models, especially when it comes to detailed and precise detection at various
levels. Key to this model’s success is the use of DINO and a novel training
strategy, which enhance its ability to identify and analyze complex patterns in
mammographic images.

5 Compliance with Ethical Standards

Data used for this study was collected from human subjects who provided their
consent. This study was performed in line with the principles of the Declaration
of Helsinki. Approval was granted by the Ethics Committee of Qassim Health
Cluster in Saudi Arabia (no. 1442-1753964; granted 03 May 2021).
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