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Abstract. Diffusion models exhibit promising prospects in magnetic
resonance (MR) image reconstruction due to their robust image gener-
ation and generalization capabilities. However, current diffusion models
are predominantly customized for 2D image reconstruction tasks. When
addressing dynamic MR imaging (dMRI), the challenge lies in accurately
generating 2D images while simultaneously adhering to the temporal di-
rection and matching the motion patterns of the scanned regions. In
dynamic parallel imaging, motion patterns can be characterized through
the self-consistency of k-t data. Motivated by this observation, we pro-
pose to design a diffusion model that aligns with k-t self-consistency.
Specifically, following a discrete iterative algorithm to optimize k-t self-
consistency, we extend it to a continuous formulation, thereby designing
a stochastic diffusion equation in line with k-t self-consistency. Finally,
by incorporating the score-matching method to estimate prior terms, we
construct a diffusion model for dMRI. Experimental results on a cardiac
dMRI dataset showcase the superiority of our method over current state-
of-the-art techniques. Our approach exhibits remarkable reconstruction
potential even at extremely high acceleration factors, reaching up to 24X,
and demonstrates robust generalization for dynamic data with tempo-
rally shuffled frames.

Keywords: Diffusion models · Physics-informed deep learning · k-t self-
consistency · MR reconstruction.
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1 Introduction

Dynamic Magnetic Resonance Imaging (dMRI) is a powerful imaging modal-
ity due to its superior spatial resolution and ability to reveal temporal motion.
However, the inherent long acquisition time of dMRI [12] scans renders MR
images vulnerable to motion artifacts [3,7] and limits their spatial and tempo-
ral resolutions. Therefore, undersampling data and incorporating physical priors
for accelerated imaging have emerged as a prominent research focus. Given the
distinctive imaging attributes, dynamic imaging acceleration is required to in-
corporate priors in spatial (k) and temporal (t) dimensions.

To leverage k-t priors for connecting spatiotemporal correlations, early re-
searches integrated compressed sensing (CS) [15] into MR reconstruction, result-
ing in promising outcomes. k-t SLR [13] and L+S [17] utilize sparse and low-rank
constraints in different dimensions. However, due to the challenges associated
with hyperparameters selection and long reconstruction times, researchers have
turned to utilizing deep networks to transform CS methods into deep learning-
based approaches, such as PS-Net [5] and [6]. These methods employ complex
2D+1D networks for reconstruction, where the 2D network encodes spatial pri-
ors and the 1D network models temporal dynamics. Common implementations
include 3D convolutions [11,23], 2D+1D convolutions [21], and CRNN [19,20].
Nevertheless, these approaches are commonly restricted to specific data types.

Recently, score-based diffusion models [24] have demonstrated significant ad-
vantages in image generation by using stochastic differential equations (SDE) to
encode and decode images across multiple time steps. Compared to traditional
deep learning-based methods, diffusion models offer acceleration-independent
training [18] and achieve higher acceleration factors [8,4]. However, their pri-
mary application is limited to 2D reconstruction, potentially leading deviations
from temporal motion patterns in dMRI. [14] introduced an accelerating T1rho
diffusion model based on joint distribution, but it struggles to generalize to dif-
ferent data motion patterns.

In response to the limitations of diffusion in dMRI, we propose a diffusion
model that ensures the generated images conform to the motion patterns in the
temporal direction. Specifically, we extend the k-t self-consistency discrete it-
erative algorithm to a continuous paradigm, and design the drift and diffusion
coefficient for a novel SDE that satisfies k-t self-consistency of data. Addition-
ally, leveraging the score matching method and SDE with physical priors, we
construct a diffusion model that can accurately capture the motion patterns of
the scanned region employing k-t self-consistency. To the best of our knowledge,
this is the first work to utilize SDE for connecting spatiotemporal information.
We evaluated our proposed method on a cardiac dataset, and the results demon-
strate its remarkable reconstruction effectiveness at 4 different acceleration fac-
tors. Furthermore, when shuffling the temporal frames of the data, our method
showed minimal loss, highlighting its strong generalization capabilities.
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2 Method

2.1 TSPIRiT

In the paradigm of achieving acceleration through undersampled data acquisi-
tion, the imaging process of dMRI can be expressed as:

ŷ = Ax+ n, (1)

where ŷ ∈ Cnx×ny×nc×nt is the acquired k-space measurements in the dimen-
sions of 2D space, coil, and temporal frame. x ∈ Cnx×ny×nt is the real image,
and n is the noise interference. The encoding matrix A = MFS includes coil
sensitivity map (CSM) S, Fourier operator F and sampling mask M.

SPIRiT [16] is a static imaging method with k-c physical self-consistency
that utilizes coil-by-coil relationships for k-space data interpolation reconstruc-
tion. According to [9,10], we derived the low-rank property between frames
[with details in Appendix]. Consequently, we can develop TSPIRiT with k-t
self-consistency to perform spatiotemporal interpolation based on SPIRiT.

The schematic of TSPIRiT is shown in Fig. 1(a), which implements k-t self-
consistency by utilizing the neighboring 2D+t space (including acquired and
unacquired points) to interpolate until the synthesized data Gx̂ from neighboring
points and x̂ are equal. The optimization equation can be modeled as:

argmin
x̂

||Gx̂− x̂||22, s.t. ||Ax− ŷ||22 ≤ ϵ, (2)

where the first term enforces self-consistency of data, and the second term re-
alizes the consistency with the MR physical imaging. The kernel G is a weight
matrix obtained from the calibration region [16] and operates on the 2D+t space
to fill in the missing data points. x̂ = Fx is the interpolation result in k-space,
and ϵ is used to control the degree of data consistency.

2.2 k-t Self-Consistency Diffusion

TSPIRiT-SDE To avoid learning inherent spatiotemporal relationships using
deep networks, we consider modeling a SDE with k-t self-consistency through
the interpolation process of TSPIRiT. Specifically, let x0 be the recovered image,
the discrete iterative algorithm of Eq. 2 is described as:

xk = xk+1 + αk+1Φ(xk+1) + βk+1A
H(Axk+1 − ŷ), k = T − 1, . . . , 0, (3)

where α and β are used to control steps, Φ(x) = F−1(G− I)H(G− I)Fx rep-
resents the gradient of the self-consistency term. The interpolation process can
be seen as the reverse diffusion process conditioned on Ax − ŷ without gener-
ation capability. Consequently, based on the continuous formulation of Eq. 3,Φ
can be regarded as the drift coefficient of SDE. Moreover, considering the high
similarity between frames, adding the same Gaussian noise to different frames,
the model may struggle to discriminatively reconstruct them. Thus, we propose
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Fig. 1. (a) TSPIRiT: k-space interpolation in the adjacent 2D+t space (black and red
points denote acquired and missing data). (b) The self-consistency constraint effect of
ΩΦ on coil (the first column) and temporal dimension (the second and third columns).
(c) The overall framework of k-t Self-Consistency Diffusion. (d) The detailed forward
process of self-consistency noise is gradually injected into the multi-frame images.

ΩΦ with k-t self-consistency to constrain noises that conform to image motion
patterns. The constraint process is defined as:

ΩΦ : z → argmin
z

||GFz− Fz||22, ∀z ∈ Cnx∗ny∗nt , (4)

where z is initialized fromN (0, I). The constraint effect is illustrated in Fig. 1(b).
For better illustration, we also present the constraint performance on coil dimen-
sion based on SPIRiT. Ultimately, we derive the novel TSPIRiT-SDE in line with
k-t self-consistency:

dx =
η(t)

2
Φ(x)dt+

√
β(t)ΩΦdw. (5)

According to the theory of SDE [2], there exists a reverse SDE for Eq. 5
enabling the reconstruction. Specifically, we derive the reverse SDE as:

dx =

[
η(t)

2
Φ(x)− β(t)ΩΦΩΦ

∗∇x log pt(x | y)
]
dt+

√
β(t)ΩΦdw̄. (6)

Estimating the Score Function It is crucial to obtain the perturbation kernel
of SDE to estimate ∇x log pt(x | y). According to Eq. 5.50 and 5.51 in [22], we
derive the perturbation kernel of the proposed SDE (with details in Appendix):

p0t(x(t) | x(0) = N (x(t);x(0), σ2ΩΦΩ
∗
Φ(I)), (7)

the score function of the proposed model is derived as:

θ∗ = argmin
θ

Et{λ(t)Ex(0)Ex(t)|x(0)[||σsθ(x(t), t) + ΩΦ(z)||22]}. (8)
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Algorithm 1 PC Sampling (TSPIRiT-SDE).

Require: {ηi}Ni=1, {βi}Ni=1, σ, λ1, λ2, r, K, N , ŷ, S, M
1: Initialize xN ∼ ΩΦ(N (0, σ2)), z ∼ ΩΦ(N (0, I)
2: for i = N − 1 to 0 do
3: g← sθ∗(xi+1, i+ 1)
4: m =

∑nc
c=1 S

∗
cF−1 (F(Scxi)M− ŷ)

5: ϵ← λ1 (||g||2/||m||2)
6: xi ← xi+1 +

1
2
ηi+1Φ(xi+1) + βi+1ΩΦ(g − ϵm) +

√
βi+1ΩΦ(z)

7: for k ← 1 to K do
8: g← sθ∗(x

k−1
i , i)

9: m =
∑nc

c=1 S
∗
cF−1

(
F(Scx

k
i )M− ŷ

)
10: ϵ1 ← 2 (r||z||2/||g||2)2
11: ϵ2 ← λ2 (||g||2/||m||2)
12: xk

i ← xk−1
i + 1

2
ηi+1x

k−1
i + ϵ1(g − ϵ2m) +

√
2ϵ1ΩΦ(z)

13: end for
14: xi−1 ← xK

i

15: end for
16: return x0 ▷ xi = x0

i

The framework of k-t Self-Consistency Diffusion is shown in Fig. 1, and Predictor-
Corrector (PC) sampling for image generation is presented in Algorithm 1.

3 Experiments and Results

3.1 Dataset

The fully sampled dMRI data were acquired using a 3T MR scanner (MAGNE-
TOM Trio, Siemens) with 20-channel receiver coil arrays. Imaging parameters
used for data acquisition were: TE/TR = 1.5/3.0 ms, FOV = 330×330 mm, slice
thickness = 6 mm, acquisition matrix = 256×256. The data were collected from
29 volunteers with 356 slices, among which 25 randomly selected patients were
used for training, and the remaining 4 were used for testing. We applied rigid
transformation-shearing for data augmentation, shearing the dynamic images in
the x, y, and t directions. Eventually, we obtained 800 2D-t multi-coil cardiac
samples sized 192 × 192 × 18 (nx × ny × nt) for training, and 118 samples for
testing. In the experiments, random Cartesian undersampling masks [1] were
used to create sample pairs, and CSM were estimated by ESPIRiT [25].

3.2 Implementation Details

Compared to other methods using 2D+1D networks to capture motion patterns,
our method utilizes the 2D ncsnpp network [24] of VE-SDE. The temporal frame
is rearranged to the batch size dimension to ensure consistency in the convolution
parameters of each frame. Therefore, the input tensor has a size of nt×2×nx×ny,
where 2 represents the concatenated real and imaginary parts of the complex
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data. The training procedure consisted of over 200 epochs, the ADAM optimizer
was used to train the model, and the exponential moving average (EMA) rate
was set to 0.999. The numbers of iterations N and K were set to 1000 and 1. The
conjugate gradient descent algorithm with 5 iterations was utilized to quickly
solve the optimization equation in Eq. 4.

3.3 Comparison with State-of-the-Art Methods

We compared our method with state-of-the-art reconstruction methods, includ-
ing TSPIRiT, CS method L+S [17], deep learning-based DL-ESPIRiT [21], and
score-based methods (VE-SDE [8] and Joint-VE-SDE [14]). Particularly, VE-
SDE and Joint-VE-SDE were used to verify the effectiveness of the proposed
SDE for temporal information interaction.

Table 1. Quantitative comparison of different methods with 4 acceleration factors.

ACC Method MSE(∗e-5) PSNR SSIM(∗e-2)

12X

TSPIRiT 41.87 ± 20.38 34.22 ± 1.89 91.82 ± 3.34
L+S 22.68 ± 17.21 37.35 ± 2.66 93.14 ± 2.72

DL-ESPIRiT 5.49 ± 2.96 43.15 ± 2.14 96.73 ± 1.25
VE-SDE 145.28 ± 156.34 31.18 ± 5.22 84.49 ± 5.63

Joint-VE-SDE 16.59 ± 33.81 42.36 ± 4.78 96.42 ± 2.23
Ours 2.83± 2.15 46.42± 2.74 98.15± 0.90

16X

TSPIRiT 51.52 ± 27.48 33.35 ± 1.94 89.43 ± 4.04
L+S 49.98 ± 33.75 33.84 ± 2.65 88.07 ± 4.62

DL-ESPIRiT 8.03 ± 3.90 41.42 ± 1.98 95.67 ± 1.43
VE-SDE 191.13 ± 170.59 29.08 ± 4.29 78.46 ± 7.08

Joint-VE-SDE 13.68 ± 33.80 41.57 ± 4.03 96.32 ± 2.13
Ours 6.34± 3.86 44.54± 3.28 97.65± 1.12

20X

TSPIRiT 55.19 ± 24.93 32.95 ± 1.72 88.84 ± 3.80
L+S 113.44 ± 49.88 29.88 ± 1.96 80.56 ± 5.37

DL-ESPIRiT 11.28 ± 5.23 39.91 ± 1.93 94.60 ± 1.56
VE-SDE 250.27 ± 204.88 27.59 ± 3.91 74.68 ± 7.23

Joint-VE-SDE 26.03 ± 78.23 41.14 ± 4.66 96.11 ± 1.92
Ours 5.04± 3.32 43.63± 2.21 97.21± 1.06

24X

TSPIRiT 64.37 ± 25.56 32.20 ± 1.52 86.68 ± 4.15
L+S 231.99 ± 104.51 26.79 ± 2.00 73.60 ± 5.49

DL-ESPIRiT 13.26 ± 6.35 39.22 ± 1.93 94.11 ± 1.75
VE-SDE 489.82 ± 381.14 24.59 ± 3.87 67.78 ± 7.99

Joint-VE-SDE 63.12 ± 108.48 40.30 ± 4.43 95.39 ± 2.79
Ours 6.56± 4.15 42.45± 2.16 96.73± 1.25

Table 1 presents the quantitative results of different methods with various
acceleration factors. The proposed approach outperforms other methods, even at
a high acceleration factor of 24. The visual results depicted in Fig. 2 demonstrate
that our method achieves more accurate and detailed reconstruction compared
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Fig. 2. Visual comparison of different methods with 4 acceleration factors.

to others. Specifically, we also present the reconstruction results of challeng-
ing systolic images (see Appendix). The advantages compared to VE-SDE and
Joint-VE-SDE highlight the effectiveness of utilizing a 2D network and the pro-
posed SDE with k-t self-consistency for processing three-dimensional (2D+t)
data. Both the SDE-based Joint-VE-SDE and our method demonstrate signifi-
cant advantages over traditional methods at high acceleration factors. However,
VE-SDE struggles to generate realistic images at high accelerations due to its
inability to utilize temporal correlations effectively. This leads to unstable and
unrealistic results, as seen in the high variance of VE-SDE in Table 1.

3.4 Ablation Study

To further verify the effectiveness of the proposed SDE, we conducted exper-
iments to investigate the contributions of the drift coefficient Φ and the self-
consistency constraint of noise ΩΦ. The quantitative and qualitative results with
acceleration factors of 12 and 16 are respectively presented in Table 2 and Fig. 3.
The results show that the model fails to achieve proper reconstruction without
Φ, as our method relies on it for k-t self-consistency reconstruction. And the
neglect of the noise constraint term ΩΦ significantly affects the detail preserv-
ing ability, aligning with the purpose of using ΩΦ to differentiate time frames
with high similarity. This highlights that the key point of the proposed k-t Self-
Consistency Diffusion in achieving dynamic image reconstruction lies in the k-t
consistency embedded in the SDE, rather than complex networks.
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Table 2. Quantitative results of ablation study on Φ and ΩΦ in the proposed SDE
with acceleration fators of 12 and 16.

ACC Method Φ ΩΦ MSE(∗e-5) PSNR SSIM(∗e-2)
w/o Φ ✓ 566.22 ± 344.16 23.09 ± 2.23 59.46 ± 7.65

12X w/o ΩΦ ✓ 13.35 ± 3.98 38.93 ± 1.24 89.29 ± 2.00
Ours ✓ ✓ 2.83± 2.15 46.42± 2.74 98.15± 0.90

w/o Φ ✓ 688.76 ± 426.39 22.26 ± 2.26 56.87 ± 8.08
16X w/o ΩΦ ✓ 48.71 ± 36.94 34.24 ± 3.18 78.16 ± 8.34

Ours ✓ ✓ 6.34± 1.86 44.54± 3.28 97.65± 1.12

Fig. 3. Visual results of ablation study on Φ and ΩΦ in the proposed SDE with accel-
eration fators of 12 and 16.

3.5 Performance on Temporally-Frame-Shuffled Data

To evaluate the generalization of the proposed method, we randomly shuffled the
temporal frame order of data and compared our method with Joint-VE-SDE, the
well-performing SDE-based method with competent reconstruction capabilities.
The experimental results before and after two different random shufflings are
shown in Fig. 4. The results indicate that the arrangement of temporal frames
in dynamic MR images has minimal impact on our model, while Joint-VE-SDE
exhibits poor reconstruction performance after shuffling. This is because our
method leverages SDE to facilitate inter-frame information interaction, instead
of relying on networks like Joint-VE-SDE to directly learn temporal patterns.
This advantage is particularly beneficial for imaging irregular dynamic move-
ments.

4 Conclusion and Discussion

In this study, we developed a novel diffusion model with k-t self-consistency based
on a SDE that can conform the dynamic patterns of dMRI data in the 2D+t
space. This model eliminates the need for complex networks and instead utilizes
a continuous paradigm inspired by the discrete iterative process of TSPIRiT.
By incorporating k-t self-consistency, our SDE can effectively track information
in the temporal dimension, allowing us to design the diffusion model based on
score-matching theory. Experimental results on cardiac datasets have demon-
strated the effectiveness and generalization of our approach. In future research,
we intend to explore the potential application of this model in reconstructing
other irregular dynamic data.
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Fig. 4. Results of diffusion-based models on temporally shuffled data at R = 12.
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