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Abstract. In this paper, we propose a new architecture, called Deform-
Mamba, for MR image super-resolution. Unlike conventional CNN or
Transformer-based super-resolution approaches which encounter chal-
lenges related to the local respective field or heavy computational cost,
our approach aims to effectively explore the local and global information
of images. Specifically, we develop a Deform-Mamba encoder which is
composed of two branches, modulated deform block and vision Mamba
block. We also design a multi-view context module in the bottleneck layer
to explore the multi-view contextual content. Thanks to the extracted
features of the encoder, which include content-adaptive local and efficient
global information, the vision Mamba decoder finally generates high-
quality MR images. Moreover, we introduce a contrastive edge loss to
promote the reconstruction of edge and contrast related content. Quan-
titative and qualitative experimental results indicate that our approach
on IXI and fastMRI datasets achieves competitive performance.

Keywords: Magnetic Resonance Imaging · Super-Resolution · Mamba
· Deformable.

1 Introduction

Magnetic resonance imaging (MRI) is one of the broadly used medical imag-
ing techniques for disease diagnosis. The use of high-resolution MR images can
allow radiologists to diagnosis accurately as it provides more anatomical and
pathological information. However, high-quality MRI requires a long echo time
(TE) or repetition time (TR) and needs expensive medical equipment. Obtaining
high-resolution MR images from limited scanning time and acquired hardware
is highly demanded in clinical. Thus, improving the resolution of MRI is par-
ticularly important. The technique of image super-resolution (SR) has drawn
a lot of attention in medical image processing. Specifically, the MRI super-
resolution task aims to synthesize high-resolution (HR) MR images from the
low-resolution (LR) counterparts in a cost-effective way.
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The two main categories of super-resolution techniques are traditional and
deep learning-based techniques. Bicubic and b-spine [12] are two examples of
interpolation-based traditional SR techniques. Other more complex traditional
methods have also been developed, such as methods based on reconstruction [19,
11], and methods based on examples [23, 24]. These traditional methods use their
limited prior knowledge to improve image resolution, which has fast processing
speed but always blurs details. Benefiting from the strong feature representation
ability of convolutional neural networks (CNNs), deep learning-based methods
have been used for super-resolution task [5, 13, 18, 2, 7] Super-resolution convolu-
tional neural network (SRCNN) [5] firstly applied CNNs to the SR task. Later,
the further improvements are all based on the SRCNN [13, 18, 2, 15]. For ex-
ample, Qiu et al. [18] adopted SRCNN [5] and a sub-pixel convolutional layer
to obtain high-quality MR images. Furthermore, a feedback adaptive weighted
dense network (FAWDN) [2] was developed for high-resolution medical image
reconstruction. However, these methods only exploit the knowledge of a lim-
ited receptive field, ignoring the long-range dependencies in the image. To solve
this issue, vision Transformer has emerged in the low-level tasks [14, 6, 3, 27, 20],
demonstrating the ability to capture the global contexts. For example, Forigua
et al. [8] proposed SuperFormer, which uses the swim transformer [16] for MR
image SR. Fang et al. [6] designed a high-frequency Transformer that incorpo-
rates the high-frequency structure prior to implement image SR. Despite their
remarkable success, these approaches still encounter several problems. (1) Cal-
culating the self-attention in Transformers incurs space and time resources that
increase quadratically as the number of tokens grows. (2) The interaction of the
range of utilized features has not been fully explored. (3) The training strate-
gies usually focus on pixel level differences, making it difficult to constrain the
reconstruction of high-frequency and overall image distribution information.

To address the aforementioned problems, we propose a multi-scale network
called Deform-Mamba for MR image super-resolution, which simultaneously in-
corporates the deformable locality features with computationally lightweight
global complementary features into the multi-scale network. State Space Mod-
els (SSMs) [10] have been widely explored recently. It can linearly model 1D
sequences and learn long-range dependencies. The SSMs have achieved good
performance in continuous long sequence data analysis tasks such as natural lan-
guage processing (NLP). Recently, Mamba [9] has further improved SSMs in dis-
crete data modeling, which is a new alternative solution for CNN or Transformer.
It can further model long-range dependencies effectively with linear complexity
through input-dependent selection mechanisms and hardware-aware algorithms.
Compared to Transformer-based methods, Mamba is suitable for both small and
large datasets. Transformers usually require large datasets, risking overfitting on
smaller ones. Mamba shares parameters between time steps, learning from less
data and preventing overfitting. For large datasets, Transformers need substan-
tial computational power and struggle with ultra-large datasets, while Mamba
is more efficient, requiring fewer computational resources. Some studies have ex-
plored the application of Mamba in computer vision tasks. For example, Zhu
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et al. [26] designed a vision Mamba backbone with bidirectional Mamba blocks,
which demonstrates its effectiveness in semantic segmentation, classification, and
object detection tasks. Xing et al. [22] proposed SegMamba for 3D medical image
segmentation. Inspired by the success of Mamba, we first propose to use Mamba
to realize the MR image super-resolution task. Different from the traditional
method combining ordinary convolution and Transformer to learn the local and
global features, we design a Deform-Mamba module as the basic unit to merge
the strengths of both deformable CNNs [4] and Mamba. This module can fully
explore local and global features of the image according to the image content. We
combine this module with the Unet network to further learn multi-scale local and
global information. Furthermore, we also develop a multi-view context module
to strengthen the ability to understand image semantic content in the bottle-
neck layer. To further enhance the high-frequency information of super-resolved
images, we introduce a contrastive edge loss (CELoss) that focuses more on
the edge texture and contrast of MR images. The quantitative and qualitative
experimental results demonstrate the effectiveness of our Deform-Mamba.

2 Method

2.1 Preliminaries

State Space Models (SSMs) [10], i.e., Mamba [9] that core is selective scan space
state sequential model (S6), maps a 1-D function or sequence x(t) ∈ R to the
output y(t) ∈ R through a hidden state h(t) ∈ RN. It is usually calculated by
the linear ordinary differential equations (ODEs).

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ RN×N is the state matrix. B ∈ RN×1 and C ∈ R1×N are the projection
parameters.

Mamba uses the discrete rule zero-order hold (ZOH) to discretize ODEs into
discrete functions, which is more suitable for deep learning scenarios. Specifically,
we use timescale parameter ∆ to transform A and B into discrete parameters
A and B, respectively. The specific implementation is as follows:

A = exp(∆A),B = (∆A)−1(exp(∆A)− I) ·∆B. (2)

Eq. (1) will be the following form after the discretization:

ht = Aht−1 +Bxt, yt = Cht. (3)

Finally, the model generates the output via a global convolution as follows:

K =
(
CB,CAB, . . . ,CA

M−1
B
)
,y = x ∗K, (4)

where M denotes the length of the input sequence x. K ∈ RM represents a
structured convolutional kernel. This model can selectively and linearly learn
the long-range dependencies of sequences.
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Fig. 1. Architecture of our Deform-Mamba. (A) The overall architecture mainly con-
sists of a Deform-Mamba encoder, a multi-view context module, and a vision Mamba
decoder. (B) An implementation of the Deform-Mamba module includes (B-1) mod-
ulated deform block, (B-2) vision Mamba block, and (B-3) 2D-Selective-Scan (SS2D)
block. (C) Multi-view context block. (D) Contrastive edge loss (CELoss).

2.2 Proposed Architecture

We show the main network architecture in Fig.1 (A). In the first step, we use pixel
shuffle to upsample low-resolution image in a learnable manner, so as not to lose
image information. Our approach mainly contains patch embedding, a Deform-
Mamba encoder, a multi-view context module, a vision Mamba decoder, and a
final projection layer. Specifically, the image is first cropped into non-overlapping
patches through patch embedding. The encoder consists of a Deform-Mamba
module and patch merging that increases the number of channels. We also design
the multi-view context module to further enhance feature representation in the
bottleneck layer. In the decoder, each layer consists of a pure vision Mamba
module and patch expanding that reduces the number of channels. The super-
resolved image is obtained through the final projection layer. Furthermore, we
develop a contrastive edge loss (CELoss) to regulate the generation of edges and
contrast of the image.
Deform-Mamba Module. As illustrated in Fig.1 (B), we develop a Deform-
Mamba module to extract local and global features that can be adaptive to
image content. It mainly consists of two branches, modulated deform block and
vision Mamba block. For local operation, we use the modulated deform block
to adaptively modify the size of the receptive field of local operation, while for
global operation, we apply a novel vision Mamba block for building long-distance
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dependence between features. Then we add output features of two branches to
gradually fuse the multi-scale deformable local and efficient global information.

Specifically, Fig.1 (B-1) shows the network structure of the modulated deform
block. Different from traditional convolution using fixed shape sampling, the
modulated deform block can dynamically learn the convolution bias according to
the image content to adaptively extract features. The operation is characterized
as follows:

Y (p) =
K∑

k=1

wk ·X (p+ pk +∆pk) ·∆mk, (5)

where k is the index. wk denotes the k-th kernel weight. X and Y are the input
and output feature map. p, pk, △pk and △mk are the sampling position, k-th
predefined offset, dynamic offset, and modulation scalar for the k-th location,
respectively. Specifically, ∆pk ∈ RH×W×2C and ∆mk ∈ RH×W×C are learned by
the convoluional layer. ∆pk = Conv (X), and ∆mk = σ (Conv (X)). The σ is the
sigmoid function. We then add the learned △pk to pk and adaptively change the
sampling position based on the image content. In addition, △mk can control the
weight of the offset sampling points, which reduces the interference of irrelevant
features.

Fig.1 (B-2) illustrates the architecture of the vision Mamba block. Unlike
the Transformer, which employs a self-attention mechanism to calculate long-
range dependencies of images. The vision Mamba block models in a sequential
manner, which is more efficient than Transformer, in particular for processing
high-resolution images. The input feature map first passes through layer normal-
ization, then it diverges into dual pathways. The first pathway involves the input
through a linear layer and then an activation function. In the second pathway, it
is processed via a linear layer, depthwise separable convolution, and an activation
function, subsequently into the 2D-Selective-Scan (SS2D) and layer normaliza-
tion. Then we use multiplication to integrate both pathways. We also utilize
channel attention to model the correlation between different channels. Fig.1 (B-
3) shows the specific implementation of SS2D. The scan expanding first unfolds
the image in four different directions to fully mine effective information. The
main core module S6 of Mamba is used to connect with previous patches of the
image by the hidden state space to lightly learn long-range dependencies (Eq.2-
Eq.4). For more details of S6, please refer to [10]. Finally, the scan merging can
merge four features of different sequences to recover the original size.
Multi-view Context Module. Inspired by [1], we also develop a multi-view
context module in the bottleneck layer to improve the ability of feature extraction
by exploring the multi-view information. The bottleneck layer is a crucial loca-
tion for feature extraction and information aggregation. As shown in Fig.1 (C),
we parallelly utilize atrous convolution with different dilation rates to increase
the receptive field of the convolution kernel. These features are concatenated to
fuse feature information at different scales, without increasing the number of
parameters and computational complexity. Then we use the residual connection
to get the output of the bottleneck layer.
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Loss Function. We utilize the L1 loss function to measure the difference be-
tween the network prediction and the ground truth image. However, pixel-level
loss functions primarily concentrate on the individual disparities among pix-
els, failing to comprehensively grasp the structural intricacies within an image.
Therefore, we design a contrastive edge loss (CELoss) to constrain the genera-
tion of more detailed super-resolved MR images by enhancing the edge and local
contrast information.

LCELoss =
∑
i

∥Ei ⊙ SR−Ei ⊙HR∥22 , (6)

where SR is the super-resolved MR image, and HR is the ground-truth high-
resolution image. Ei is the i th contrastive edge convolution kernel. As shown in
Fig.1 (D), i ∈ [0, 2]. Specifically, E1 enhances horizontal and vertical edges via
neighborhood differences. E2 targets diagonal edges through diagonal differential
calculations, and E3 boosts local contrast by comparing the central pixel with
all neighborhoods. The three kernels are designed to emphasize the edges of the
image, as well as local contrast, to highlight the details of liquid and moisture
regions in MR images. The final loss function ensures that the SR model not
only reconstructs the image at the pixel level but also restores critical visual
features about edge and contrast. It is represented as:

Loss = L1 + βLCELoss, (7)

where the weight β for LCELoss is 0.1 in our experiment.

3 Experiments

3.1 Datasets and Evaluation Metrics

To evaluate the effectiveness of our approach, we conducted experiments on
the IXI 5 and fastMRI 6 with the brain and knee T2 weighted image. The
slice resolutions of IXI and fastMRI are 256×256 and 320×320, respectively.
We utilized 368 subjects from the IXI dataset for training and 92 for testing.
For the fastMRI dataset, 227 subjects were used for training and 45 for testing.
To synthesize low-resolution input images, we implement it in the frequency
domain [17] to further fit the true distribution of low-resolution images. We
utilized the peak signal to noise ratio (PSNR) and structural similarity index
(SSIM) [21] to evaluate the quality of super-resolved images.

3.2 Experimental Details

We implemented our approach with the Pytorch toolbox and trained the network
on the NVIDIA RTX A6000 GPU. We used Adam optimizer with the initial
5 http://brain-development.org/ixi-dataset/
6 https://fastmri.med.nyu.edu/
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Table 1. Ablation study with different components in our Deform-Mamba

Method PSNR↑ SSIM↑
w/o Deform 32.42 0.9250
w/o MVC 32.60 0.9266

w/o CELoss 32.59 0.9264
Deform-Mamba 32.65 0.9270

Table 2. Quantitative results with different methods under fastMRI and IXI dataset

Method fastMRI 4× IXI 4×
PSNR↑ SSIM↑ PSNR↑ SSIM↑

SRCNN 19.74 0.3653 28.12 0.8357
VDSR 20.31 0.3839 28.34 0.8392
FMISR 24.35 0.5207 28.27 0.8349
T2Net 30.56 0.6244 29.73 0.8773
HAT 29.65 0.6155 30.73 0.9007
Our 32.11 0.7194 30.60 0.8965

learning rate of 1×10−4 to update network parameters. The network was trained
for 50 epochs with the batch size of 2. We used 4 vision Mamba blocks in each
level. The channel count of each level is [96,128,384,768].

3.3 Ablation Study

We studied the importance of the designed components in our Deform-Mamba.
To validate the effect of deformable local features for super-resolution, we remove
the modulated deform block. It represented w/o Deform, which is the pure vision
Mamba network. Further, we remove the multi-view context module to evaluate
the effect of multi-scale contextual information in the bottleneck layer. This
model is called w/o MVC. We also verify the effect of contrastive edge loss,
which is denoted as w/o CELoss. The overall result of our model is Deform-
Mamba. From the Tab.1 we can see that the results of w/o Deform, w/o MVC,
and w/o CELoss are worse than our Deform-Mamba. It indicates the necessity
of deformable local features and multi-view contextual information for super-
resolution, and the constraint of edge and contrast is useful to generate high-
frequency information.

3.4 Comparison with state-of-the-art methods

Quantitative Analysis. For quantitative evaluation, we compared the PSNR
and SSIM values of SRCNN [5], VDSR [13], FMISR [25], T2Net [7], HAT [3]
and our approach on the IXI and fastMRI dataset under 4× upsampling factors.
We include the results of the 2× upsampling in the supplementary materials.
The quantitative comparison experiment results are shown in Tab.2. It can be
seen from the table that the PSNR and SSIM values of our approach on the
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Fig. 2. Qualitative results with different methods under fastMRI and IXI dataset

fastMRI dataset obtain the best performance than those of other methods. This
is because our proposed Deform-Mamba model can adaptively mine the local
and global content of images. For the IXI dataset, we achieved the second-best
results compared to transformer-based HAT. Concerning the two MRI datasets,
IXI dataset is used for brain, and fastMRI for knee. Knee images feature simple
textures and fairly clear contours, with data evenly distributed. Brain images
are complex, with indistinct white and gray matter contours both physically and
physiologically, occupying 2/3 of the image center. The rest is noise-filled black
background. The difference in the average values of these two zones is very large,
thus slightly disrupting Mamba’s attention mechanism. Furthermore, Mamba’s
hardware-aware algorithm processes data linearly with sequence length, signif-
icantly boosting computational speed. HAT’s cost in Multi-Adds for a 64x64
input is about 5x higher than ours, our method is 2x faster in training, showing
superior efficiency.

Qualitative Analysis. The super-resolved results and corresponding error maps
are shown in Fig.2 under the fastMRI and IXI datasets. The error map is typi-
cally a visualization of the difference between the super-resolved image and the
ground truth high-resolution image. The darker the color, the smaller the dif-
ference between the generated image and the label image, and vice versa. The
figures show that the compared methods on the fastMRI dataset produce blur-
ring artifacts since the available information in the image is not fully utilized by
these approaches. It can be clearly seen in the error map that the color of our
method is the darkest. For the IXI dataset, our method with fewer parameters
achieved the best local visualization results.
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4 Conclusion and Future Work

In this paper, we have developed a Deform-Mamba network for MR image super-
resolution. Our model combines a modulated deform block and vision Mamba
block as a unit in the encoder, which can activate more content-adaptive local
and global features for super-resolution. The designed multi-view context block
in the bottleneck layer can further enhance the fusion of multi-scale contex-
tual information. The contrastive edge loss further reconstructs edge-enhanced
and contrast-consistent high-resolution images. Quantitative and qualitative ex-
periments demonstrate the effectiveness of our approach. In future work, our
Deform-Mamba network can be added as a baseline to the diffusion model to
further improve the performance of super-resolution networks. We can also apply
our method to more clinical datasets with other types of imaging, such as PET
and CT, to extend its clinical implications.
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