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Abstract. Improved thyroid nodule risk stratification from ultrasound
(US) can mitigate overdiagnosis and unnecessary biopsies. Previous stud-
ies often train deep learning models using manually selected single US
frames; these approaches deviate from clinical practice where physicians
utilize multiple image views for diagnosis. This paper introduces Thy-
Graph, a novel graph-based approach that improves feature aggregation
and correlates anatomically proximate images, by leveraging spatial in-
formation to model US image studies as patient-level graphs. Graph con-
volutional networks are trained on image-based and patch-based graphs
generated from 505 US image studies to predict nodule malignancy.
Self-attention graph pooling is introduced to produce a node-level in-
terpretability metric that is visualized downstream to identify impor-
tant inputs. Our best performing model demonstrated an AUROC of
0.866±0.019 and AUPRC of 0.749±0.043 across five-fold cross validation,
significantly outperforming two previously published attention-based fea-
ture aggregation networks. These previous studies fail to account for
spatial dependencies by modeling images within a study as independent,
uncorrelated instances. In the proposed graph paradigm, ThyGraph can
effectively aggregate information across views of a nodule and take ad-
vantage of inter-image dependencies to improve nodule risk stratification,
leading to better patient triaging and reducing reliance on biopsies. Code
is available at https://github.com/ashwath-radha/ThyGraph.
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1 Introduction

Over the past two decades, thyroid cancer incidence in the United States has
nearly tripled [6]. Ultrasound (US) imaging is the primary modality used by
radiologists to assess detected nodules, but this process can be subjective and
time-consuming. Moreover, over 90% of detected nodules are clinically insignif-
icant or benign, so uncertainty in radiologic evaluation can lead to unnecessary
fine-needle aspiration biopsies (FNABs) [2, 10]. With the fundamental role of US
in thyroid nodule diagnostics and the need for a more deterministic, non-invasive
diagnostic alternative to biopsies, research has focused on developing deep learn-
ing methods that enhance nodule malignancy prediction from US [12]. In recent
years, convolutional neural networks (CNNs) have become popular for automat-
ing diagnostic tasks from imaging [8, 17]. Most current approaches for thyroid
nodule diagnosis select an optimal US displaying a nodule and develop a CNN-
based classifier with these images [21, 11]. This approach is limited because it
requires a physician to manually select a specific frame from an image study.
More importantly, physicians typically use multiple image views of a nodule to
make effective diagnoses. In this context, a view is defined as a specific per-
spective of a nodule/anatomy captured through an ultrasound image. Given the
clinical context for this diagnostic task, an improved information aggregation
technique across US studies could improve automated malignancy classification.

Methodology that combines information from various imaging perspectives
has been explored in tangential domains, such as lung CT, chest radiographs,
and breast ultrasound [22, 15, 4]. But to the best of our knowledge, there has
been minimal research within the space of thyroid nodule diagnosis in leveraging
features across multiple US images. Two prior studies demonstrated how cine
clips could be used to improve risk stratification of thyroid nodules [18, 16].
However, the cines for these studies have highly correlated frames from a narrow
anatomical region and are clipped to contain a consistent view of a nodule. Huang
et al. used a transverse and longitudinal image of the thyroid, both containing
a view of the nodule, to develop a model [3]. Despite demonstrating potential,
this approach would require the user to choose two input images and does not
leverage the remaining image study to provide additional physiological context.
Wang et al. also attempt to leverage whole image studies using an attention-
based feature aggregation method [14]. Most recently, Zhuang et al. proposed an
ensembled attention multiple instance learning (AMIL) approach that combines
US features at various image scales [23]. Despite using whole US studies and
exhibiting promising results, the approaches proposed by Wang and Zhuang
are trained in an AMIL framework, where each US is treated independently,
disregarding their inter-image relationships.

Graphs provide an effective alternative for modeling US. By representing
image features as nodes and accounting for inter-image relationships as edges,
spatial dependencies and contextual information can be learned through the
application of graph convolutional networks (GCNs). GCNs layer convolution
operations to learn better node representations and incorporate local and global
graph structure information [5]. Yin et al. proposed an end-to-end framework
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using a joint CNN-GCN to diagnose kidney US studies [20]. In this case, feature
similarity between deep features extracted from US frames was used as a metric
to determine connectivity. Yan et al. were the first to use GCNs in the domain of
thyroid US. In their study, a dataset-level graph was created to represent every
patients’ nodules and correlate images with similar features [19]. Despite the
effectiveness of these methods, an approach that integrates anatomical context
during graph construction and generates unique patient-level graphs could be
more effective. To take advantage of untapped opportunities with thyroid US,
this paper presents ThyGraph, a novel graph-based approach to model image
studies and improve thyroid nodule diagnosis. The main contributions are as
follows:

1. ThyGraph, a patient-level graph construction method that models US stud-
ies by correlating anatomically related images to underscore inter-image de-
pendencies.

2. Implementation of multi-scale graphs that use information from both full
frames and localized patches.

3. A visualization method that leverages attention-based graph pooling to cor-
relate attention weights with image orientation and anatomical location, and
plot the weights for better model explainability.

2 Methodology

2.1 Data Collection and Preprocessing

A retrospective, dataset of 505 US image studies from unique patients was col-
lected from an academic medical center. Institutional Review Board (IRB#
19–001535) of University of California, Los Angeles gave ethical approval for
this study. During an US examination, 20-80 images are taken that span a va-
riety of anatomic regions and spatial orientations. Each image study includes a
transverse or longitudinal view of the thyroid isthmus, and transverse (inferior,
middle, and superior) and longitudinal (lateral, middle, and medial) views of the
right and left thyroid lobes.

The main inclusion criterion was a fine-needle aspiration biopsy (FNAB)
performed within one year of the US examination. The corresponding cytology
report was acquired and following the Bethesda System for Reporting Thyroid
Cytopathology, the categorization for risk of malignancy was extracted. Consis-
tent with clinical practice, biopsies with benign cytology were labeled as benign,
while those with malignant/suspicious for malignancy cytology were deemed
malignant [1]. In cases of multiple biopsied nodules, the one with the highest
Bethesda categorization determined the image study’s label: benign if all nodules
were benign and malignant if at least one nodule was malignant. This resulted
in 371 benign and 134 malignant image studies. Across these samples, there
were 17,626 US images. Ultrasounds were passed through a data preprocessing
pipeline, which involved deidentification, negative space and artifact removal,
intensity rescaling and image whitening.
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2.2 State-of-the-Art Baselines

The first baseline, proposed by Wang et al. (Wang model), is an attention-based
aggregation network that fuses features across an US study for thyroid nodule
diagnosis [14]. The architecture is similar to a MIL framework, but unique in
that each image study is randomly subsampled or oversampled each training
iteration to ensure a consistent input size across all studies. The second baseline,
proposed by Zhuang et al., is the multi-scale, attention-based multiple-instance
learning model (MS-AMIL) ensemble model [23]. By aggregating features across
whole frames and image patches, multi-scale information regarding the nodule
was extracted. Their best performing model, an ensemble across features from
128x128 (MS-AMIL-patch128) and 256x256 (MS-AMIL-patch256) frame patches
was replicated in our experiments.

2.3 ThyGraph

Image-Based Graph Construction The dataset can be defined as D : {(sn,ln);
n=1,...,N} for N image studies. ln is the label, signifying benign or malig-
nant, for image study sn. There are Mn ultrasound frames in image study
sn:{fnm;m = 1, ...,Mn}. Each frame, fnm has unique dimensions RwXhX1,
where w and h represent the width and height of the frame.

Every frame within an image study also has embedded text representing that
frame’s location and spatial orientation within the thyroid (ex. Left Transverse
Superior). An optical character recognition (OCR) algorithm was developed to
process each frame and extract this text. Any frames with views of surrounding
lymph nodes were not included. Fig. 1 provides a representation of the different
locations and spatial orientations a frame can have. For each frame, fnm, its OCR
output is used to determine a 2-D coordinate, (x, y). Specifically, the x-coordinate
determines whether the frame captures the isthmus, or a lateral, middle or medial
view of the left or right lobes. The y-coordinate determines whether the frame
is in an inferior, middle or superior position. Thus, each frame’s OCR output,
which equates to the frame’s anatomical location, is mapped to a 2-D coordinate
that allows us to estimate each frame’s anatomical distance from one another.

Next, for each image study, an undirected graph is constructed in which each
node is represented by a frame-level feature vector. This feature vector, R1X6016,
is a concatenation of the final fully connected layer of a pretrained ResNet101,
DenseNet201 and ResNeXt101. Since this ensemble model demonstrated promis-
ing results in a previous study for thyroid nodule diagnosis, it was repurposed for
this task [9]. Euclidean distance is then calculated between the 2-D coordinates
for every pair of frames in the study following

d(f, f ′) = ∥f − f ′∥. (1)

The adjacency matrix, A, to represent the graph’s edges is constructed to capture
the weights associated with each edge

Aij = max(0, α− d(fi, fj)), (2)
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where i and j represent the row and column indices of the adjacency matrix,
corresponding to two different graph nodes. This definition permits the graph
to assign more weight to edges between nodes whose frames share proximate
coordinates, an indicator of anatomical proximity.

Patch-Based Graph Construction Next, the image-based graph construc-
tion method is extended to accommodate image patches. Each frame, fnm, with
an OCR-extracted location is tiled into nine patches, represented as pnmk for
k ∈ [1, 9], each with dimension R224X224X1. The patch extraction algorithm max-
imizes frame coverage by generating patches within the frame boundaries, avoid-
ing negative space. Each patch is given an additional z-dimension, extending the
coordinate representation of its source frame, resulting in a three-dimensional
coordinate, (x, y, z). The z-coordinate represents the patch’s position along the
posterior-anterior axis. By leveraging the anatomical context provided by OCR-
extracted location, each patch is represented within the 3-D coordinate system.
Now, for each image study, it is possible to build a patch-based undirected graph,
where each node is represented by a patch-level feature vector, R1X2048 which is
extracted using a ResNet50 model, pretrained on ImageNet. Eq. (1) is adapted
to calculate Euclidean distance between all pairs of patch coordinates. Then,
Eq. (2) determines the graph’s adjacency matrix, with the patch coordinates
as inputs and a different empirically determined threshold selected accordingly.
Thus, similar to the image-based graphs, each node’s neighborhood inherently
estimates that patch’s anatomical proximity to others.

Lateral
Middle

Medial

Superior

Middle

Inferior

x

y

z Left LobeIsthmusRight Lobe

Left Longitudinal Lateral

Left Transverse Middle

S I

M L

Fig. 1. Various spatial orientations and locations captured by frames within a thyroid
US study. The two example images are labeled with superior (S), inferior (I), medial
(M) and lateral (L) to help the viewer orient each image within the context of the 3-D
coordinate system.
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GCN with Self-Attention Graph Pooling The non-Euclidean nature of
graphs can be leveraged through GCNs to promote learned correlations. A two-
layer GCN is trained on the image-based (image-GCN) and patch-based (patch-
GCN) graphs to serve as baselines. Furthermore, we explore the effect of intro-
ducing self-attention graph (SAG) pooling [7] to the patch-GCN. The resulting
patch-SAG-GCN model includes SAG pooling after each graph convolution. SAG
pooling calculates node-level attention scores using an auxiliary graph network
and then creates an attention mask to retain a subset of nodes the network
deems to be of higher value. This joint feature-based and topology-based pool-
ing method allows the architecture to progressively identify more relevant nodes
and capture localized graph information.

During evaluation, for each patient-level graph passed through patch-SAG-
GCN, we extract the attention scores generated by the first SAG pooling op-
eration. Each score is associated with a graph node, which via our graph con-
struction method, represents a different image patch. Since each patch has a 3-D
coordinate mapping within the system in Fig.1, a coordinate-level attention can
be assigned. Moreover, in a given graph, certain patches can be mapped back to
the same coordinate; in this case, the aggregated attention scores are averaged
to create a mean coordinate-level attention.

2.4 Model Evaluation and Implementation

All architectures, including the Wang model and MS-AMIL baselines, are trained
and evaluated using stratified 5-fold cross validation. Evaluation metrics include
area under the receiver operating characteristic curve (AUC), area under the
precision-recall curve (AUPRC), accuracy, precision and recall. The results are
reported in terms of mean and standard deviation across the five cross validation
folds. All architectures, except the Wang model, were trained for 200 epochs with
early stopping based on validation AUC and a patience value of 25 epochs. The
Adam optimizer is used with a learning rate of 1e-4. Weighted cross-entropy
loss is used to train the models. The Wang model was trained using different
hyperparameters in line with the original paper. The statistical significance of
the proposed models relative to the Wang model and MS-AMIL was compared
at significance level 0.05 using DeLong test for AUC and Wilcoxon signed-rank
test for accuracy. All experiments are implemented in PyTorch with a NVIDIA
DGX-1.

3 Results and Discussion

First, the impact of ThyGraph graph construction method is evaluated. The
image-GCN and the patch-GCN demonstrated 0.713 and 0.847 AUC, respec-
tively. The patch-SAG-GCN on its own also achieved 0.847 AUC, but when en-
sembled with the image-GCN and patch-GCN models (GCN-Ensemble), demon-
strated 0.853 AUC. The MS-AMIL-patch128 and MS-AMIL-patch256 branches
demonstrated a 0.83 and 0.824 AUC, respectively, and when ensembled had
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Fig. 2. Overview of proposed graph construction and model architecture.

a 0.837 AUC. With a larger patient cohort, we were able to demonstrate im-
proved performance for MS-AMIL patch ensemble from the published results of
0.785±0.104 AUC. Despite this improvement, the patch-GCN still outperformed
the MS-AMIL-patch128, MS-AMIL-patch256 and the patch ensemble.

The MS-AMIL framework, although designed to independently analyze and
aggregate features across images, can still identify important input instances
through its attention mechanism. Despite the framework not considering de-
pendencies between inputs, the patterns it learns are still valuable in nodule
malignancy prediction. To incorporate the contributions of the MS-AMIL model
with ThyGraph, we assessed an ensemble of MS-AMIL-patch128, MS-AMIL-
patch256, image-GCN, patch-GCN and patch-SAG-GCN (Full-Ensemble), which
demonstrated an 0.866 AUC, significantly improving upon MS-AMIL (p=0.03)
and Wang model (p<0.001). The Wang model achieved a 0.632 AUC on the
in-house dataset, but was significantly outperformed by all proposed models
(p<0.001). The performance discrepancy with the Wang model can be attributed
to the use of a different training dataset, and the published results using smaller
and more variably sized images studies.

Table 1. Model performance across the five cross validation folds comparing the pro-
posed approach with state-of-the-art baselines (*statistically significant compared to
MS-AMIL at significance level 0.05).

Model AUC AUPRC Accuracy Precision Recall
Wang model [14] 0.63 ± 0.04 0.39 ± 0.04 0.63 ± 0.09 0.41 ± 0.06 0.67 ± 0.15
MS-AMIL [23] 0.84 ± 0.03 0.68 ± 0.06 0.83 ± 0.04 0.68 ± 0.08 0.73 ± 0.07
image-GCN 0.71 ± 0.06 0.52 ± 0.12 0.68 ± 0.07 0.46 ± 0.06 0.73 ± 0.19
patch-GCN 0.85 ± 0.03 0.71 ± 0.09 0.81 ± 0.05 0.63 ± 0.1 0.81 ± 0.06
patch-SAG-GCN 0.85 ± 0.03 0.7 ± 0.07 0.85 ± 0.03 0.71 ± 0.05 0.75 ± 0.06
GCN-Ensemble 0.85 ± 0.03 0.72 ± 0.06 0.85 ± 0.04 0.73 ± 0.08 0.73 ± 0.08
Full-Ensemble 0.87 ± 0.02* 0.75 ± 0.04 0.84 ± 0.04* 0.69 ± 0.08 0.78 ± 0.09
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3.1 Attention-Based Interpretability

The coordinate-level attention scores extracted from patch-SAG-GCN are visu-
alized within a 3-D thyroid mesh[13]. Each 3-D coordinate is mapped to a corre-
sponding location within the mesh and the coordinate-level attention scores are
used to create a volumetric heat map. Hot spots indicate that patch-SAG-GCN
is focusing on imaging features from those thyroid regions when making a certain
prediction. Fig.3 illustrates the value of our attention-based visualization tech-
nique in enhancing model interpretability. In case a), the model places greater
weight on features from the right lobe, which is also the location of the biopsied
malignant nodule. Similarly, in case b), the model focuses on features from the
left lobe, the location of the biopsied benign nodule. However, it also directs
attention to the right inferior lobe, which according to the cytology report, is
the location of a second, unbiopsied nodule.

x

yz

left

superioranterior

a

x

x

b

Fig. 3. Visualization of attention heatmap overlaid on a thyroid mesh model for two
patients. The attention weights are scaled between 0 and 1 for each patient. The biop-
sied nodule location, extracted from corresponding cytology report, is marked with a
green X. As indicated, the x-axis stretches from right to left, the y-axis from inferior
to superior and the z-axis from posterior to anterior.

4 Conclusion

We propose ThyGraph, a novel approach to aggregate information across thy-
roid US image studies. The majority of past work required manual interven-
tion to select an optimal frame to train, evaluate and prospectively use deep
learning-based thyroid nodule diagnostic methods. Previous approaches seek-
ing to fuse multi-view information typically treated each image independently,
through MIL-inspired approaches, disregarding inter-image dependencies. Thy-
Graph not only effectively models an US study despite its non-uniform nature
but specifically integrates spatial location information to better represent cor-
related ultrasounds. Subsequently, the patch-GCN and image-GCN are able to
learn multi-scale information across the image study, and the patch-SAG-GCN
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promotes model explainability, allowing us to localize suspicious regions within
the thyroid. Moving forward, different patch- and frame-level feature extractors
can be considered, such as vision transformers to improve on the current CNN-
based technique. Another limitation of this paper is that further external valida-
tion datasets from other academic institutions could help highlight this method’s
strengths and weaknesses. Ultimately, the novel graph construction method of
ThyGraph and model ensemble of MIL and GCN techniques, presents notable
advantages in terms of automation and interpretability, enhancing our ability to
effectively risk stratify thyroid nodules.
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