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Abstract. Selecting regions of interest (ROIs) in whole-slide histology
images (WSIs) is a crucial step for spatial molecular profiling. As a gen-
eral practice, pathologists manually select ROIs within each WSI based
on morphological tumor markers to guide spatial profiling, which can be
inconsistent and subjective. To enhance reproducibility and avoid inter-
pathologist variability, we introduce a novel immune-guided end-to-end
pipeline to automate the ROI selection in multiplex immunofluorescence
(mIF) WSIs stained with three cell markers (Syto13, CD45, PanCK).
First, we estimate immune infiltration (CD45+ expression) scores at the
grid level in each WSI. Then, we incorporate the Pathology Language
and Image Pre-Training (PLIP) foundational model to extract features
from each grid and further select a subset of grids representative of the
whole slide that comparatively matches pathologists’ assessment. Fur-
ther, we implement state-of-the-art detection models for ROI detection
in each grid, incorporating learning from pathologists’ ROI selection. Our
study shows a significant correlation between our automated method and
pathologists’ ROI selection across five different types of carcinomas, as
evidenced by a significant Spearman’s correlation coefficient (> 0.785, p
< 0.001), substantial inter-rater agreement (Cohen’s κ > 0.671), and the
ability to replicate the ROI selection made by independent pathologists
with excellent average performance (0.968 precision and 0.991 mean av-
erage precision at a 0.5 intersection-over-union). By minimizing manual
intervention, our solution provides a flexible framework that potentially
adapts to various markers, thus enhancing the efficiency and accuracy of
digital pathology analyses.

Keywords: ROI selection · Automated detection · Immune infiltration
· Multiplex immunofluorescence.
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1 Introduction

Selecting representative ROIs within whole-slide images (WSIs) is a routine
task in pathology, serving foundational roles in various analytical procedures,
including molecular scoring, comprehensive in situ molecular characterization,
diagnostic assessments, and biomarker identification [14]. Traditionally, the pro-
cess of ROI selection has chiefly relied on manual methods, which can be time-
consuming, subjective, and might fail to represent the whole tissue [12]. In addi-
tion, the advent of multiplex immunofluorescence (mIF) imaging demands higher
precise quantification and localization of numerous biomarkers to elucidate cel-
lular dynamics and represent the whole-slide context. Therefore, there is a clear
need for objective, reproducible, and scalable techniques for ROI selection.

The field has witnessed significant strides in integrating computational mod-
els to automate the ROI selection process. Li et al. [11] pioneered the ROI
selection automation and formulated it as a segmentation task. They proposed a
superpixel-based ROI search algorithm combining boundary update and coarse-
to-fine refinement. With the fast progress of deep learning, particularly convo-
lutional neural networks(CNNs) [2, 5, 19], several studies have adopted either
classification-based[1, 16] or detection-based [15] models to address this chal-
lenge. These automated frameworks demonstrated a reduction in pathologists’
manual labor and increased precision [10]. Recently, Hossain et al. [6] employed
the vision transformer [3] for ROI selection in WSIs and achieved superior perfor-
mance compared to earlier CNN-based methodologies. Despite these advance-
ments, the field faces specific challenges, such as the predominant application
of these technologies to Hematoxylin and Eosin (H&E) stained images, lim-
iting their use with other staining methods. Additionally, the effectiveness of
these computational models often hinges on the structure of the ROI being well-
defined, which may not always be the case in complex pathological conditions.

In this research, we present an immune-guided automated system for select-
ing ROIs in mIF images to identify ROIs in the epithelial/neoplastic immune
interface in carcinomas. From a pathological standpoint, quantifying immune in-
filtration is relevant for clinical prognosis [4, 18]; hence, developing an immune-
guided approach contributes to the explainability and impact of an automated
approach. Unlike previous models designed for applications in regions with clear
structural definitions, our study embraces the inherently subjective nature of
identifying ROIs in mIF images where no clear ground truth exists closely match-
ing pathologist’s selections in terms of consistency and coverage; this being a
crucial step in molecular profiling, impacting the detection and quantification of
biomarkers. While our current pipeline is optimized for mIF, it contains flexible
components in pre-processing stages that can be adapted to different staining
techniques. Furthermore, our approach offers a level of selection flexibility pre-
viously unattainable in manual processes. This innovative pipeline significantly
enhances the explainability, reproducibility, scalability, and efficiency of digital
pathology analyses by optimizing multiplex imaging through streamlined ROI
selection by applying SOTA models within a rich dataset, and demonstrating
the transformative potential of an automated approach for mIF imaging.
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2 Methods

2.1 Dataset Preparation and Pathological Annotation
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Fig. 1. (a) Immune-guided AI ROI selection workflow. In stage 1 (b.), we generate non-
overlapping grids from tissue masks and calculate the automated immune score. In stage
2 (c.), we use the PLIP model to extract features and select grids from low-immune
(<10%) and mid-immune (10%-50%) groups based on their similarity with reference
pathologist-scored grids. Finally, in stage 3 (d.), ROIs are generated on selected grids
by applying a fine-tuned object detection YOLOv8 model.

We analyzed high-resolution (0.4 µm/pixel) mIF WSIs obtained from surgical
resection samples from patients diagnosed with papillary urothelial carcinoma
(PUC), penile squamous cell carcinoma (PSCC), urothelial carcinoma (UC),
cholangiocarcinoma (CC), and rectal squamous cell carcinoma (RSCC). We per-
formed a 5-fold cross-validation (80/20) for model training with 25 PUC images
containing 300 ROIs selected by two pathologists. The remaining four tumor
types, totaling 12 images and 144 ROIs, provide a diverse test set to evaluate
the generalizability and robustness of our approach.

Our ROI-training dataset was curated using pathologists’ annotations on
mIF slides, guided by tumor-infiltrating lymphocytes (TILs) scoring on H&E
[18] and immune-scored ROIs on mIF. Pathologists identified ROIs and assessed
immune scores by quantifying the CD45+ immune cells in the stromal area.
This evaluation excluded non-cellular regions, tumor nests, and artifacts, with
the immune score calculated as the area of CD45+ cells relative to the total
stromal area.
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The evaluation dataset was compiled to focus on automated mIF immune
scoring, an alternative to the H&E TILs scoring. This transfer learning approach
underscores the depth of our analysis, ensuring that our evaluation is flexible and
grounded in distinct yet complementary immunopathological assessments. Data
use follows MD Anderson’s Institutional Review Board (IRB) protocol (#2022-
0404).

2.2 Pipeline Overview

Our methodology has three key stages (Fig. 1). First, we preprocessed WSI
to quantify immune infiltration using CD45 expression, setting a foundation for
ROI selection. Next, we refined this selection by aligning with pathologist-scored
grids via feature similarity optimization, utilizing the PLIP model [7] for feature
extraction. Finally, we employed the YOLOv8 object detection model, fine-tuned
with pathologist annotations, for precise ROI detection in immune-selected grids.

2.3 Stage 1 - Automated Immune Scoring

For computing an accurate automated immune scoring (aIS), based on their
distinct color ranges, we identified and excluded auto-fluorescent regions, such
as those produced by hemorrhages and blood vessels, which could confound the
analysis. Then, for clear tissue segmentation, we utilized hole-filling techniques
to construct a comprehensive contour mask, allowing us to distinguish between
glass and tissue regions within the tissue sample since the latter may not express
any of the markers considered here (Syto13, CD45, or panCK). In our case, the
stroma was defined as the region within the tumor devoid of epithelial cells,
artifacts, or necrosis from where we calculate aIS.

The subsequent phase involved generating 3000×3000-pixel non-overlapping
grids throughout the WSI. Within each selected grid (grid with < 50% black
pixel), aIS is determined by classifying pixels within the stroma as immune
(yellow, CD45+), excluding those classified as epithelial (green, PanCK+). We
verified that the association of color and marker expression was consistent across
our dataset.

aIS =
CD45+Area

GridArea−BackgroundArea− panCK+Area
(1)

In each case, the area was calculated by selecting specific color ranges to
accurately capture various intensities of the indicated colors, considering that
both strong and weak expressions of yellow represent CD45+ immune infiltration.
To evaluate the suitability of this approach for quantifying immune infiltration,
we designed an evaluation step that included manual immune scoring (mIS) by
two independent pathologists blinded to the aIS. We evaluate the association
between aIS and mIS with Spearman’s correlation for continuous values and
Cohen’s κ score for inter-rater agreement on categorized scores orthogonally
comparing aIS, mIS-1, and mIS-2.
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2.4 Stage 2 - Group Classification and Similarity Matching

Upon calculating aIS for each grid, we classified them into two immune classes
where aIS < 10% (low immune) or aIS between 10% and 50% (mid immune). Our
tissue samples did not have grids with aIS > 50%, and since the grids correspond
to tumor regions, we do not expect grids with a predominance of immune cells.
These criteria mirror a repository of pathologist-annotated grids consisting of
grids (3000 × 3000 pixels) previously categorized into the same groups where
no grids were scored mIS > 50%. To define the number of grids per immune
class per slide, we compute the global ratio for each immune class over the total
number of grids, keeping the same ratio for the selected grids.

After defining the number of grids containing the ROIs, we employ the PLIP
model to perform feature extraction and select the best grids. Selecting similar
regions based on feature similarity from a pre-trained model is standard practice
for image retrieval [20]. We applied feature extraction on each grid with aIS
and on the reference grids with mIS in each immune class. For each grid in a
sample, we calculated the feature similarity (cosine similarity) with the reference
grids. The selected grids are the ones that maximize the feature similarity with
the reference set. We confirmed PLIP’s effectiveness using dispersion along the
principal components in PCA, showing it captures key variances in H&E images
that apply to mIF images.

2.5 Stage 3 - Object Detection Training and ROI Selection

The grids selected from the previous stage that matched features with the refer-
ence set were subjected to analysis by a finely tuned object detector, primarily to
predict potential new ROIs of size 900×900 pixels (corresponding to the average
size of pathologist-annotated ROIs).

To provide a robust evaluation of our framework, we evaluated the perfor-
mance of 4 detector models for the task of ROI selection. We assessed the per-
formance of RetinaNet [13], Faster R-CNN [17], YOLOv5 [8], and YOLOv8 [9].

For ROI prediction, the selected low and mid-immune grids from stage 2
were fed as input into the detector models, generating ROIs with the highest
confidence scores. To evaluate each detector, we calculated the overlap of the
prediction with manually selected ROIs by two independent pathologists who
were blinded to the model’s predictions. We quantified the mean average pre-
cision (mAP) and the intersection over union (IOU) scores between predictions
and pathologists’ ROI selection. This approach ensures that our study identifies
ROIs with a high degree of accuracy while quantifying the confidence of these
predictions.

3 Results

3.1 Validation of Automated Immune Scoring

The automated immune score (aIS) is shown to be apt for inferring immune
infiltration, as shown by having a significant association with the manual scores
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Fig. 2. Correlation between automated (aIS) and manual (mIS) immune scores. Two
independent pathologists scored N=125 grids. The lower triangular shows Spearman’s
Correlation and P-values. The upper triangular shows the inter-rater agreement, which
is measured with Cohen’s κ score on immune classes. P-values for Spearman’s correla-
tion *p<0.05, **p<0.01, ***p<0.001.

(mIS) from two independent pathologists (Fig 2). There is a strong and signif-
icant correlation between AI and the pathologists’ scores (Fig 2a, Spearman’s
correlation aIS vs mIS-1 = 0.835, p-value=9.310×10−34; AI vs mIS-2 = 0.785,
p-value=2.116×10−27), suggesting the suitability of the aIS to estimate mIF
immune infiltration.

The relevance of the automated score is further supported by the high inter-
rater agreement analysis between aIS and mIS (Fig 2b). Cohen’s κ provides
insights into the agreement between raters focusing on categorized scores (< 10%
or 10%-50%,). The observed values of 0.685 (aIS vs mIS-1) and 0.671 (aIS vs mIS-
1) indicate a substantial agreement having as a reference that the concordance
between pathologists (mIS-1 vs mIS-2) is κ = 0.707 and a theoretical value of
κ = 1 reflects a complete agreement between the raters.

3.2 Assessment of Feature-based Grid Similarity

To select the grids from a WSI candidate for containing ROIs, we applied fea-
ture extraction of grids and, stratified by immune class, selected those with
the highest similarity to the pathologist’s reference set. Implementing a foun-
dational PLIP model pre-trained on H&E images facilitates the extraction of
high-dimensional feature embeddings, providing a granular analysis of the cellu-
lar and morphological attributes discernible within the tissue specimens.

Grid selection prioritized those with higher cosine similarity to pathologist-
annotated reference grids (Fig. 3). Both Low-Immune and Mid-Immune selected
grids (best grids) demonstrated higher median similarity scores compared to Not-
Selected grids. This trend highlights the effectiveness of our selection criteria in
capturing expert evaluations, particularly in selecting grids that pathologists
consider more indicative of the immune context within the tissue.
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Fig. 3. (a) Quantitative comparison of the selected and not-selected grids cosine
similarity with the reference set for low immune (<10%) and mid immune (10%-
50%) scores. Boxplots show median (thick line), interquartile range (box limits), and
minimum-maximum values (whiskers). (b) Examples of selected grids and the ref-
erence for both immune classes. The purple boxes indicate the grids that are most
similar to the reference grids based on feature embeddings to be selected based on a
2:1, low:medium immune ratio.

3.3 Evaluation of Predicted ROI Selection

In our comparative evaluation for object-detection models trained and validated
on tumor-infiltrating lymphocytes (TIL)-based ROI (Table 1), YOLOv8 out-
performed competitors models having the highest mAP scores (mAP@50=0.903
± 0.005, mAP@50-95= 0.713 ± 0.007). Based on the superiority in accuracy,
particularly over varied IOU thresholds, we select YOLOv8 as the last layer of
our framework and as the baseline model for further fine-tuning. A YOLOv8-S
model with batch size 64, image size 1280 pixels, learning rate 0.01, momentum
0.937, and weight decay 0.0005 was trained for 1000 epochs with a patience of
200. At 20x magnification, the final scores were: box loss 0.523, class loss 0.399,
and distribution focus loss 1.001. Validation scores were: box loss 1.686, class
loss 0.985, and distribution focus loss 1.51.

Pathologist's
Selection

YOLOv8 
Prediction

PUC RSCC CC UCC PSCC

0.911 0.966 0.958 0.965 0.893IOU

Fig. 4. Examples of immune-guided ROI detection and comparison with manual
pathologists selection. The intersection-over-union (IOU) score between pathologists
and automated selected ROIs is shown for each example. PUC: Papillary Urothelial
Carcinoma, PSCC: Penile Squamous Cell Carcinoma, UC: Urothelial Carcinoma, CC:
Cholangiocarcinoma, and RSCC: Rectal Squamous Cell Carcinoma.



8 T. Gautam et al.

Table 1. Performance comparison of state-of-the-art detection models on ROI selection
trained with TIL-based annotations. The mean average precision (mAP) is calculated
at 50 and 50-95 IOU. Mean mAP ± SD was calculated across five distinct cancer types.

Metric RetinaNet Faster R-CNN YOLOv5 YOLOv8
mAP@50 0.745 ± 0.101 0.801 ± 0.009 0.848 ± 0.007 0.903 ± 0.005
mAP@50-95 0.504 ± 0.111 0.601 ± 0.100 0.655 ± 0.008 0.713 ± 0.007

To evaluate the performance of immune-based ROI detection, we performed
5-fold cross-validation with pathologists-selected ROIs. The analysis showcases
the efficacy of transfer learning methodologies, where models pre-trained on TIL-
scored ROIs are fine-tuned to evaluate immune-scored ROIs (Table 2). These
results also demonstrate the effectiveness of fine-tuning to enhance the model’s
sensitivity and specificity across a diverse set of tumor types.

Table 2. Performance comparison of baseline and fine-tuned YOLOv8 models eval-
uated across different tumor types. PUC: papillary urothelial carcinoma, PSCC: pe-
nile squamous cell carcinoma, UC: urothelial carcinoma, CC: cholangiocarcinoma, and
RSCC: rectal squamous Cell Carcinoma. The mean average precision (mAP) is calcu-
lated at 50 and 50-95 IOU. Mean mAP ± SD calculated across folds (PUC) and across
tumor types for PSCC/RSCC/UCC/CC.

PUC PSCC/RSCC/UCC/CC
Metric Baseline Fine-tuned Baseline Fine-tuned
Precision 0.833 ± 0.035 0.971 ± 0.043 0.825 ± 0.030 0.965 ± 0.041
Recall 0.885 ± 0.014 0.993 ± 0.006 0.891 ± 0.021 0.980 ± 0.003
mAP@50 0.901 ± 0.110 0.991 ± 0.005 0.888 ± 0.104 0.992 ± 0.004
mAP@50-95 0.888 ± 0.107 0.897 ± 0.009 0.901 ± 0.005 0.911 ± 0.002

The resulting ROI selection with a fine-tuned YOLOv8s model as the last
layer of our approach shows considerable pathologist-validated generalizability
across different tumor types (Table 2, Fig 4). These results reflect a high degree
of congruity between the YOLOv8 predictions and the pathologist’s annotations,
implying a robust model performance across different tumor morphologies and
reliability in complex and varied pathological scenarios.

4 Conclusion

We propose a comprehensive framework for immune-guided ROI selection on
whole-slide mIF images, which would impact research and overcome manual
processing due to the different challenges such an approach may entail. Our
approach showcases the reproducibility and efficiency of automated ROI selection
without sacrificing explainability, preserving biologically relevant features, such
as immune infiltration, and with a good overlap with independent pathologists’
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evaluation. Beyond automation, this approach can improve the reliability of
downstream molecular analyses.

Our study advances automated ROI selection but faces limitations that guide
our future directions. The primary constraint is the dataset size, which restricts
the current approach to a limited number of markers. Additionally, the foun-
dational model, trained exclusively on H&E images, may not seamlessly apply
to broader pathology practices. Future efforts will aim to enlarge the dataset,
incorporate artifact correction techniques, broaden model training across imag-
ing methods, and integrate spatial analysis into ROI selection. Although limited
by the minimal set of markers and tumor types availability, this research un-
derscores the significant impact such automated systems could have on digital
pathology, ultimately showcasing the co-evolution between pathologists’ needs
and AI developments.
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