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Abstract. We explore the efficacy of a region-based method for im-
age tokenization, aimed at enhancing the resolution of images fed to a
Transformer. This method involves segmenting the image into regions us-
ing SLIC superpixels. Spatial features, derived from a pretrained model
are aggregated segment-wise and input into a streamlined Vision Trans-
former (ViT). Our model introduces two novel contributions: the match-
ing of segments to semantic prototypes and the graph-based clustering
of tokens to merge similar adjacent segments. This approach leads to a
model that not only competes effectively in classifying diabetic retinopa-
thy but also produces high-resolution attribution maps, thereby enhanc-
ing the interpretability of its predictions.
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1 Introduction

Automatic diagnosis of diabetic retinopathy (DR) from retinal images is one of
the most promising applications of deep learning in ophthalmology. Convolu-
tional neural networks (CNNs), and more recently Vision Transformers (ViTs)
[4], have shown impressive performance in DR detection and grading. ViTs break
down the input image into a sequence of tokens extracted from non-overlapping
square patches. This procedure, while computationally convenient, is a rather
coarse-grained approach to downsampling the image. In most natural images,
but especially in fundus imaging, anatomical structures such as lesions, vessels,
and optic disc/cup, do not lend themselves very well to this kind of strategy
given their irregular shapes and highly variable sizes. Microaneurisms notably
are typically only a few pixels wide even in high resolution images, and their pres-
ence and number is a crucial element in clinical guidelines for DR grading. A
square token might contain parts of several different structures, whose character-
istics must all be encoded in a fixed-size vector. Several studies have underscored
the efficacy of Vision Transformers (ViT) in diabetic retinopathy classification
from fundus images [20,17,14] [3,6]. Transformers have demonstrated good scal-
ability with larger datasets, prompting the development of foundation models
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pretrained on massive retinal datasets [?]. However, a common aspect of these
approaches is that the input image resolution is constrained by memory limita-
tions, typically ranging from a maximum of 512 × 512 to as low as 224 × 224.
With emerging modalities such as Ultra Wide Field fundus imaging gaining clin-
ical adoption and offering resolutions up to 4000 × 4000, it becomes crucial to
devise new methodologies to scale these models to higher resolutions.

Departing from the grid-like slicing of input images, we propose an explo-
ration of superpixel sampling. Concurrently to the present work, recent studies
have presented promising outcomes by changing the tokenization process of im-
ages fed to ViTs1. Aasan et al.[1] suggest a straightforward superpixel sampling
approach for input images, achieving performance comparable to standard ViT
while enhancing interpretability. Similarly, Huang et al.[7] introduce the con-
cept of “supertokens” wherein the network learns to aggregate similar tokens.
Likewise, SPFormer [13] learns to group pixel features into clusters of super-
pixels, achieving competitive performance in classification tasks. Concerning the
generated superpixels, the authors of [13] note that slightly superior clusters
are obtained with the conventional SLIC algorithm [2], a direction we chose to
follow.

Our model consists of two primary components: a feature extractor and a
classification model. For the feature extraction task, we leveraged an EfficientNet-
5 model [18](pretrained on our data), while for the classification aspect, a six-
layer Transformer architecture is used. Our principal contributions lie in the
novel interaction between these modules and a novel pooling procedure pro-
posed within the Transformer framework. Figure 1 provides an overview of our
model.

2 Methodology

2.1 Superpixels computation and segment-wise features aggregation

The SLIC algorithm [2] efficiently computes superpixels in a straightforward ap-
proach. It places cluster centers across the image in a grid, iteratively comparing
neighboring pixels within a set radius to cluster centroids, considering both color
and spatial proximity. Post-iteration, it updates the centroid positions similarly
to k-means, using a compactness parameter in its distance calculation to balance
the superpixels’ boundary adherence with their regularity. The algorithm is cus-
tomized via two hyperparameters: the desired number of superpixels N and their
compactness (adherence of superpixel boundaries to the image’s structures).

The resulting superpixels divide the image into segments arranged from top
left to bottom right, with each pixel assigned to a segment s ∈ {0, ..., N}.
Segments in the fundus image’s black borders are merged, significantly reduc-
ing total segments. Nonetheless, the segment count is still referred to as N
for simplicity. Utilizing our pretrained CNN, we extract a feature map F ∈
1 Although most of the related works were either under review or in preprint stage at
the time of writing, we still find it relevant to mention them.
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Fig. 1. Overview of the proposed method. Features are extracted using a conventional
CNN and tokenized based on superpixel segments obtained using SLIC [2]. The se-
quence obtained is given to our proposed block (highlighted in grey). First, affinity
between tokens (based on spatial proximity and prototypes matching) is estimated.
The Leiden algorithm for community detection [19] is used to pool tokens. The se-
quence of tokens is then fed to two regular transformer encoder layers. This block is
repeated three times.

Rd×(H/2k)×(W/2k) from an image I ∈ R3×H×W , where k corresponds to the num-
ber of pooling steps in the CNN and d the number of feature maps. As noted by
Shlapentokh-Rothman et al. [16], we observe that downsampling S to H

2k
× W

2k

results in losing of the smallest superpixels. Hence, we opt to reinterpolate F to
the resolution of S.

The image’s tokenization is achieved by averaging the feature maps over each
segment s.

x = mean
i,j

(F:,i,j) s.t. SLIC(I)(i, j) = s (1)

Note that instead of averaging, we could take any form of reductive function
(e.g. max, sum, etc.).

The resulting sequence can be input into a standard Transformer architec-
ture. Nevertheless, even with superpixels, the number N of tokens can become
exceedingly large on high resolution images. Given that attention computation
scales as O(N2), we introduce a novel dynamic pooling layer specifically designed
for region-based tokens, to limit the overall computational cost. The following
sections describe this phase in our model.

2.2 Affinity-based recombination of tokens

Our rationale is based on the premise that superpixel segments containing similar
information should be merged together. In the context of medical images, this
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notion of similarity is governed by two principles: spatial proximity and whether
the segments cover homogeneous biomarkers within the image. For example, a
significant portion of the retinal background can be merged. However, a segment
containing hemorrhages should not be merged with the macula, even though they
might be overlapping (see Figure 2).

We compute two adjacency matrices Asim, Aprox ∈ RN×N representing simi-
larity and proximity respectively between each token of the sequence. The first
matrix indicates that superpixels are adjacent, while the second matrix identi-
fies superpixels with similar semantic content. We ensure that both matrices are
normalized using the following equation:

Anorm = D−1/2 ·A ·D1/2 (2)

where D is the diagonal degree matrix.

To constrain simultaneously the spatial and semantic conditions, we defined
the affinity matrix as:

Aaffinity = Asim ⊙Aprox (3)

where ⊙ is the Hadamard product of matrices. The sequence of tokens can then
be recombined following the equation:

x′ = Aaffinity · x (4)

Equation 4 is a token-wise recombination similar to a Transformer attention
block. However, it does not change the sequence length. Our next contribution
borrows an algorithm from the literature on graph computation to progressively
cluster our segments based on the explicit rules contained in Aaffinity.

2.3 Segment adjacency

Given the superpixel segmentation map S, our objective is to determine the ad-
jacency matrix delineating the segments’ interconnections. We propose a simple
approach necessitating merely four convolutions utilizing the kernels Kx = [0, 1],
K ′

x = [1, 0], Ky = [0, 1]⊤, and K ′
y = [1, 0]⊤. This method yields two tensors Ex

and Ey ∈ N2×H×W , which can be viewed as the indices of edges connecting
neighboring superpixels horizontally and vertically, respectively.

Leveraging the scattering operations provided in the PyTorch Geometric li-
brary 2, we obtain a N×N adjacency matrix Aprox, where each entry Aprox(i, j)
denotes the number of adjacent pixels between segments i and j. Moreover, the
diagonal entries correspond to the size of each segment. The normalized ma-
trix (following Equation 2) can be construed as representing the connectivity
strength between two segments, in the range [0, 1].

2 https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#

torch_geometric.utils.to_dense_adj

https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.to_dense_adj
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.to_dense_adj
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2.4 Prototype matching

In addition to the proximity, our methodology relies on reinforcing the connec-
tion between similar segments. Instead of comparing all the pairs of segments,
we match every token to a prototype (obtained from annotated image samples)
among a set of K candidates. Tokens matching with the same prototype are con-
sidered as belonging to the same cluster. The similarity between the embedded
point xi and the prototype pj is measured using the Student’s t-distribution
following the idea proposed in [21]:

qij =
(1 + ||xi − pj ||2/α)−

α+1
2∑

j′(1 + ||xi − pj′ ||2/α)−
α+1
2

(5)

We also experimented with the cosine similarity (similarly to [10]) but found
little practical difference. However, we observed the importance of normalizing
both in xi and pj in equation 5. The scores qij are gathered into an association
matrix Q ∈ RN×K . Q can be interpreted as a probability distribution over the
set of prototypes given a specific token. Using a temperature parameter τ > 1,
we define

C = softmax
K

(Q× τ) (6)

and finally
Asim = C · CT (7)

2.5 Leiden clustering for dynamic pooling

With Aprox and Asim computed, we can now compute Aaffinity following Equa-
tion 3. Aaffinity corresponds to an undirected graph, wherein the nodes denote
segments, and the edges signify both semantic closeness and spatial adjacency.
Unlike the prevalent pooling methodologies in the literature on graph neural
networks, we don’t know a priori the number of nodes in our graph, nor do we
arbitrarily fix the number of clusters after reduction. In particular, we want the
algorithm to be able to fuse tokens beyond immediate neighbors as long as they
belong to the same subgraph, while retaining control over the approximate num-
ber of clusters, thereby mitigating the risk of excessively reducing our sequence
size. This has motivated our exploration of more generalized graph algorithms,
particularly within the realm of community detection in social networks. Traag
et al. [19] introduced the Leiden algorithm for identifying clusters of nodes, also
referred to as communities, within large graphs. Each node is allocated to a
cluster with the objective of maximizing a metric called modularity, defined as:

H =
1

2m

∑
c

(ec − γ
K2

c

2m
) (8)

ec represents the number of edges in community c, m denotes the total number
of edges in the network, Kc is the sum of degrees of nodes within community c,
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and γ serves as a hyperparameter known as resolution. The aim is to maximize
the discrepancy between the actual and expected numbers of edges within a
community. For an in-depth understanding of the algorithm, we direct readers
to the original publication [19]. The optimization of the modularity uses non-
differentiable operations (iterative assignment of nodes to clusters followed by
merging of these clusters); however Aaffinity is trainable through Equation 3.
Finally, tuning γ permits a fuzzy control over the token reduction factor. We
empirically set it to have a reduction varying between 25% to 50% at each
pooling step. We illustrate the effect of the Leiden pooling in Figure 2.

Fig. 2. Effect of the Leiden pooling on an image and groundtruths from MAPLES-DR.
Note how our pooling approach preserves the semantic structures of the segments while
merging similar ones. The labels include in particular “vessels, optic disc/cup, macula,
hemorrhages, exsudates and cotton wool spot”

3 Experiments

3.1 Data

Our model training used the EyePACS [5] train split, which includes 35,126
images, setting aside 4,000 for validation. For testing, we utilized the DDR [12],
Aptos [8], IDRiD [15] datasets, and the EyePACS test split, with image counts of
4,105, 3,662, 103, and 53,576, respectively. These 45° fundus images of varying
resolutions were labeled into five categories: No-DR, Mild, Moderate, Severe,
and Proliferative DR. We standardized the images to a 1024× 1024 resolution,
cropping out most of the black borders to focus on the circular ROI. Using
Fast-SLIC3, we generated 4096 superpixels per image, discarding about 40% in
preprocessing (those that were too small or part of the black border).

3.2 Training procedure

Hyperparameter choices The Transformer was kept lightweight, with an em-
bedding size of 176 and 16 attention heads, totalling 2.2 millions parameters. The

3 https://github.com/Algy/fast-slic

https://github.com/Algy/fast-slic


Region-Based DR Classification 7

input features were extracted from the third pooling layer of the EfficientNet-5
(27.3 millions parameters), which was kept frozen during the training of the ViT.

Prototype initialization Instead of sampling from a random distribution, we
initialized the prototypes as the mean feature representations of segments from
labelled retinal biomarkers. We exploited the 200 manually labelled images from
the MAPLES-DR dataset [11], providing the masks for 14 types of biomarkers.
Noting Y (i, j) = {1, . . . , 14} the groundtruth of an image, this initialization is
formally obtained as

pm =
1

|D|
∑
i∈D

mean
s

(F (i)
:,j,k)

s.t. SLIC(I)(j, k) = s and Y (j, k) = m

(9)

where D is the MAPLES-DR dataset.

Target loss Given the ordered nature of diabetic retinopathy grades, we mod-
eled the classification as a regression task. Our primary training loss, L1, was the
mean squared error (MSE) between the network’s output oi and the true ordinal
grade yi. The discrete prediction was made by rounding oi to the nearest integer.
Additionally, drawing on similar works [21,9], we incorporated an unsupervised
alignment loss, Lalign = KL(C||Q), which uses the Kullback–Leibler divergence
to ensure that segments align closely with their nearest prototype. Here, C is
a “confident” version of Q, promoting clear segment-to-prototype associations.
This alignment loss is calculated at each pooling layer ℓ, contributing to the
total loss, as:

Ltotal = L1 +
λ

L

L∑
ℓ=1

L(ℓ)
align (10)

where λ is a hyperparameter set to 0.01 in our experiments.

Optimization We trained our model using the AdamW solver, with a learning
rate of 0.01 and cosine decay. Due to a limited hardware budget, we only trained
the model for 10 epochs. Interestingly, we observed a very fast convergence on the
validation set, especially for a non-pretrained ViT (κ = 0.795 after one epoch).

3.3 Results

Table 1 provides the comparative performance between our model and recently
published papers. We also trained an EfficientNet-5 and various others CNN as
baselines (we only include the former in Table 1 as it was the best performing).
As we can see, our approach yields results slightly lower than the CNN, but
higher than recently published models tested on the same data and based on
ViTs like our proposed method.
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Table 1. Comparative performance between our proposed approach, a CNN baseline
(EfficientNet-5) and published results from recent ViT-based models.

Models Resolution
Cohen’s quadratic κ

EyePACS Aptos DDR IDRiD

RetFOUND [22] 224 0.488 0.572 0.627 0.606

ViT
(16)
base [14] 384 0.737 0.874 – –

EfficientNet-5 1024 0.831 0.879 0.811 0.782
Ours 1024 0.819 0.861 0.759 0.796

In addition, we ran an ablation study to evaluate the effects of our specific
contributions, summarized in Table 2. Note that beyond raw performance, 3 of-
fers the benefit of requiring less GPU-memory than 1 / 2 thanks to the pooling
process. Running the training is however around 75% slower due to the relative
complexity of the Leiden algorithm.

Table 2. Ablation study. Each variant was trained for 5 epochs.

Variants
Cohen’s quadratic κ

(EyePACS val)

1) CNN & Superpixels ViT 0.811

2) 1 + Affinity recombination (eq. 4) 0.812

3) 1 + 2 + Leiden pooling (proposed model) 0.826

4 Discussion

Our model outperforms recent ViT models by using superpixel sampling and
affinity pooling to capture intricate details necessary for accurate diabetic retino-
pathy classification. Our ablation study shows the beneficial impacts of affinity-
based recombination and Leiden pooling on the κ score. Superpixels tokeniza-
tion also offers great opportunities in term of model interpretability; we provide
heatmaps in the supplementary material as well as in our code repository. De-
spite its computational demands, Leiden pooling reduces GPU memory use, a
boon for processing high-resolution images. A current limitation is the need for
a CNN for feature extraction, which is computationally expensive. Future work
will seek more efficient feature extraction methods per segment. With this re-
search, we propose a novel methological approach to classify images, combining
conventional CNN, ViT and graph algorithms. Overall, our research presents
a new avenue for training transformers on high-resolution images, competing
well with traditional CNNs and ViTs in diabetic retinopathy classification, with
potential wider medical imaging applications.
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Code Availability Code is available in our repository https://github.com/ClementPla/
RetinalViT/tree/prototype_superpixels. It contains links to all the datasets we use.
Model weights will be shared upon request.
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