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Abstract. Multi-modality learning, exemplified by the language and
image pair pre-trained CLIP model, has demonstrated remarkable perfor-
mance in enhancing zero-shot capabilities and has gained significant at-
tention in the field. However, simply applying language-image pre-trained
CLIP to medical image analysis encounters substantial domain shifts,
resulting in significant performance degradation due to inherent dispar-
ities between natural (non-medical) and medical image characteristics.
To address this challenge and uphold or even enhance CLIP’s zero-shot
capability in medical image analysis, we develop a novel framework, Core-
Periphery feature alignment for CLIP (CP-CLIP), tailored for handling
medical images and corresponding clinical reports. Leveraging the foun-
dational core-periphery organization that has been widely observed in
brain networks, we augment CLIP by integrating a novel core-periphery-
guided neural network. This auxiliary CP network not only aligns text
and image features into a unified latent space more efficiently but also
ensures the alignment is driven by domain-specific core information, e.g.,
in medical images and clinical reports. In this way, our approach effec-
tively mitigates and further enhances CLIP’s zero-shot performance in
medical image analysis. More importantly, our designed CP-CLIP ex-
hibits excellent explanatory capability, enabling the automatic identifi-
cation of critical regions in clinical analysis. Extensive experimentation
and evaluation across five public datasets underscore the superiority of
our CP-CLIP in zero-shot medical image prediction and critical area de-
tection, showing its promising utility in multimodal feature alignment in
current medical applications.
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1 Introduction

Recently, multi-modality learning has emerged as a promising approach to en-
hance the understanding and analysis of complex data by leveraging information
from multiple sources [8, 15, 24, 29, 27, 25]. There has been a growing research in-
terest focused on integrating textual modalities into computer vision models [5].
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The synergy between image and text modalities offers mutual benefits, enhanc-
ing modeling and reasoning capabilities, and aligns closely with the multimodal
perceptual environment of the human brain [30]. One notable advancement in
this field is the pre-trained CLIP (Contrastive Language-Image Pre-training)
model, which has demonstrated remarkable performance in various tasks by
jointly learning from language and image data [10]. The CLIP model aligns im-
age and text embeddings in the latent space through contrastive learning on a
dataset comprising 400 million image-text pairs sourced from a diverse range of
publicly accessible online platforms. This fusion of modalities has significantly
improved zero-shot capabilities, allowing models to generalize to unseen tasks or
domains without explicit training [5].

Nevertheless, despite its remarkable accuracy and transfer learning capabil-
ities, CLIP’s zero-shot performance heavily relies on large-scale, high-quality
image-text paired datasets. Creating such datasets poses significant challenges,
especially in specialized domains like healthcare and radiology, where data is not
only scarce but often presents distinct patterns in both image and text compo-
nents compared to natural images and text descriptions that CLIP is trained on.
That is, there exists a significant domain shift between natural (non-medical)
and medical images [22, 23]. Additionally, CLIP’s reliance solely on contrastive
loss for extracting image and text features imposes limitations on its ability to
align these features effectively [14]. Thus, there is an increasing need to enhance
CLIP with additional mechanisms that can not only improve the multimodal-
ity feature alignment between image and text features but also leverage CLIP’s
zero-shot capability on downstream tasks with limited datasets.

To address the zero-shot performance degradation of the CLIP model in the
medical imaging domain, our strategy is to significantly improve the efficiency
when aligning multimodal features in latent space by developing a novel infor-
mation exchange mechanism in a neural network. This mechanism is inspired by
brain science research, where the Core-Periphery (CP) organization universally
exists in the brain networks [16, 19, 20, 28, 17, 1]. It has been widely confirmed
that the CP structure can effectively promote the efficiency of information trans-
mission and communication for biologically integrative processing [18]. In gen-
eral, CP organization is composed of two qualitatively distinct components: a
dense “core” of nodes strongly interconnected with one another, allowing for in-
tegrative information processing to facilitate the rapid transmission of messages
and a sparse “periphery” of nodes sparsely connected to the core. In this work,
we integrate the CP principle into our model to guide neural networks to share
weights when processing the information extracted from CLIP, consolidating
them into a unified latent space. In this way, our CP-CLIP can align the fea-
tures from multimodal data more efficiently, thereby alleviating the performance
degradation of CLIP and improving performance in downstream tasks, such as
disease classification and explainability [7, 21, 6, 26, 24]. We applied our proposed
CP-CLIP to five public medical datasets, and the experimental results show that
CP-CLIP consistently improves CLIP’s zero-shot performance. Additionally, it
effectively identifies critical areas for the diseases.
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Fig. 1. The CP-CLIP framework. Part (a): The core-periphery network, implemented
through a core-periphery principle guided multilayer perceptron neural network. The
features extracted from images and texts by CLIP are mapped to a unified space
via the core-periphery network. Part (b): The information communication and neuron
connection is guided by the generated core-periphery graphs.

2 Method

The CP-CLIP framework is shown in Fig. 1. The CP-CLIP comprises three
essential components: the generation of core-periphery graphs (CP graph), the
CP graph guided neural network, and the integration of the CP-guided neural
network into CLIP. We discuss the details in the following sections.

2.1 Core-Periphery Graph Generation

The core-periphery neural network in CP-CLIP is controlled by Core-Periphery
graphs (CP graphs). We introduce the CP graph generation process, which gen-
erates a diverse range of CP graphs within the graph space defined by core ratios.
It is worth mentioning that in a vanilla multilayer perceptron neural network,
neuron connections are fully connected, meaning each neuron is connected to all
other neurons. Therefore, the connections in a vanilla multilayer perceptron can
be represented by complete graphs, with a core ratio of a complete graph defined
as 1.0. To generate graphs with a Core-Periphery (CP) property [19, 22], we de-
fine CP graphs as having nodes categorized into core and periphery nodes. Core
nodes, acting as information integration hubs, are connected to all nodes, while
periphery nodes are solely connected to core nodes. Denoting the total number
of nodes as N and the core ratio as p, p ∈ (0, 1], we calculate the number of core
nodes as n = N × p and the number of periphery nodes as m = N × (1 − p).
Note that when the core ratio equals 1.0, the CP graphs degrade to the complete
graph, implying that the CP-guided multilayer perceptron network reverts to its
vanilla form.
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Core Ratio: 0.1

CP Graph (Adjacency Matrix) Complete Graph

Core Ratio: 0.3 Core Ratio: 0.5 Core Ratio: 1.0

Periphery NodesCore Nodes

Fig. 2. Examples of Core-Periphery Graphs with different core ratios. The first row
displays the graphs, while the second row shows their corresponding adjacency matrices.
In the adjacency matrices, the white area denotes 0, indicating no connection, while
the black area denotes 1, representing connections between nodes.

The adjacency matrix AN×N of the generated CP graph can be expressed
as:

A (i, j) =

{
1 if ∃(i, j) ∈ n

0 if ∀(i, j) ∈ m
(1)

where 1 signifies the presence of an edge between nodes i and j, and 0 indicates no
edge between the nodes. By employing various core ratios, denoted by different
combinations of n and m, a wide range of candidate graphs can be generated
within the graph space. Examples of CP graphs and complete graph are shown
in Fig. 2.

2.2 Core-Periphery Principle Guided Neural Network

In CP graphs, core nodes maintain connections to all other nodes, while pe-
riphery nodes only connect to the core nodes. To integrate the CP principle
into the organization of the multilayer perceptron neural network, we reschedule
the neuron connections based on the generated CP graphs. Here, neurons are
considered as nodes, and connections between neurons are regarded as edges.
This approach allows us to represent neural networks as graphs and utilize the
generated Core-Periphery (CP) graph to guide connections. Following this rep-
resentation paradigm, a complete graph can represent vanilla multilayer per-
ceptron networks. Similarly, we incorporate the Core-Periphery principle into
the multilayer perceptron architecture by substituting the complete graph with
the generated CP graphs. The new connection rules can then be redefined: CP
graph can be represented by G = (V, E), with nodes set V = {ν1, ..., νn}, edges
set E ⊆ {(νi, νj)|νi, νj ∈ V}, and adjacency matrix A. The information exchange
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in the CP graph guided multilayer perceptron network for a specific node i at
r-th layer is defined as:

z
(r+1)
i = σ(r)({

∑
w

(r)
ij z

(r)
j ,∀j ∈ E(i)}) (2)

where σ(·) is the activation function, z
(r)
i and z

(r)
j are the features stored in

the nodes, w(r)
ij is the weight of the edge connecting the node i and j, E(i) =

{i|i ∨ (i, j) ∈ E} are the neighborhood nodes of node i. We can rewrite the Eq.
2 in matrix form as:

Z(r+1) = σ(r){(A⊙W(r))Z(r)} (3)

where Z is the feature matrix, and W is the weight matrix, and ⊙ is the element-
wise matrix multiplication.

Each node corresponds to one or multiple neurons. We propose the following
neuron assignment pipeline to map the original neurons to the nodes: for a CP
graph with N nodes, each node will be assigned either ⌊M/N⌋ + 1 or ⌊M/N⌋
neurons, where M is the dimension at a specific layer. For example, if we utilize
a CP graph with 5 nodes for a layer with 196 dimensions, the 5 nodes will have
40, 39, 39, 39, and 39 neurons, respectively. Conversely, if we employ a CP graph
with M nodes, each node will correspond to 1 neuron.

2.3 Core-Periphery Feature Alignment for CLIP

We integrate the CP network into the CLIP model to enhance the fusion of
modality information from both images and texts, mapping them into a unified
embedding space. This framework, visually represented in Figure 1, is termed
CP-CLIP. After extracting features from images and texts using CLIP, their em-
beddings are passed through the CP network with shared weights. This process
encourages the embeddings of both modalities to converge into a unified latent
space, thereby facilitating the alignment of features.

For a mini-batch of images and texts I and T, the embeddings extracted from
CLIP are represented as ZI and ZT. We refer to the core-periphery network as
fcp. Then, the CP network maps the text and image embeddings to a unified
space as follows: {

Z
′

I = fcp (ZI)

Z
′

T = fcp (ZT)
(4)

The logits are obtained from the cosine similarity between the embeddings of
images and texts, which have been aligned by the CP network. This can be
formulated as follows:

s = Z
′

I · (Z
′

T)
T (5)

where T means transpose. For an image i, the scaled cosine similrity is obtained
by normalizing across the logits, which represent the scores or probabilities as-
sociated with the image’s relevance to various text descriptions:

yI→T
ij =

exp(sij/τ)∑Nbatch

j=1 exp(sij/τ)
(6)
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Table 1. Comparison of zero-shot classification among CLIP, MedCLIP, and CP-CLIP
models on five medical image datasets. The results of CP-CLIP were selected as the
best results across various core ratios. The balanced accuracy is shown in percentage.

Model ChestXray
(2 classes)

SIIM-ACR
(2 classes)

INbreast
(3 classes)

CheXpert5×200
(5 classes)

TMED
(3 classes)

CLIP 49.50 47.50 34.67 21.80 33.00
MedCLIP 68.31 50.00 33.56 12.90 33.33
CP-CLIP 58.51 50.05 38.66 24.90 34.00

where τ is the learnable temperature, similar to CLIP [10], j ∈ [1, Nbatch] cor-
respond to the batch of texts. Likewise, we can computer the yT→I

ji , and reach
the loss function:

L = −1

2

∑
log yI→T

ij − 1

2

∑
log yT→I

ji (7)

3 Results

In this section, we conduct extensive experiments to evaluate the performance of
the proposed CP-CLIP model on various medical image datasets under zero-shot
scenarios.

3.1 Datasets and Training Details

– MIMIC-CXR: The MIMIC-CXR database [4], comprising 377,110 images
from 227,835 radiographic studies accompanied by clinical reports, is a vital
resource for medical text-image pair analysis.

– ChestXray: The ChestX-ray dataset [13] comprises 112,120 chest X-ray
images from 30,805 distinct patients, each annotated with disease labels,
focusing on pneumonia and normal states.

– SIIM-ACR: The SIIM-ACR dataset [12] comprises 12,047 radiographic im-
ages, with 2,669 annotated to distinguish between normal lung function and
collapsed lung.

– INbreast: The INbreast database [9] consists of 115 cases comprising 6154
images captured from various views and slices. These images are categorized
into three classes: malignant, benign, and normal.

– CheXpert5x200: CheXpert5x200 [3] includes 5 classes (atelectasis, car-
diomegaly, consolidation, edema, pleural effusion), with 200 chest radio-
graphs per class.

– TMED: The TMED dataset [2] onsists of ultrasound heart images from
routine TTE scans, featuring 599 scans each labeled with a diagnosis for
Aortic Stenosis (AS), categorized into severe, early, or none
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Fig. 3. Visualization comparison of CLIP and CP-CLIP on the ChestXray, SIIMACR,
and INbreast datasets. CP-CLIP highlights critical disease-related areas, while CLIP
tends to identify shortcuts.

We initialize CP-CLIP with the pre-trained CLIP weights and subsequently
train both CP-CLIP and CLIP models on the MIMIC-CXR dataset, which com-
prises medical text-image pairs. Subsequently, we evaluate its zero-shot perfor-
mance on other five medical image datasets. Training involves 20 epochs with
a batch size of 128 on Titan GPUs, utilizing the AdamW optimizer and cosine
learning rate scheduler. Initial learning rates are 1e−6 for the CLIP model and
5e−4 for the CP network with a minimum learning rate of 1e−8.

3.2 Classification Results

We evaluate the trained CP-CLIP model under a zero-shot setting to assess
the model’s multimodal representation robustness and generalizability. Specifi-
cally, we select five unseen medical imaging datasets and compare them to two
baselines: the CLIP and MedCLIP. Note that MedCLIP was well trained on
the MIMIC-CXR dataset [14]. For fair comparisons, we use the same single
text prompt for all experiments with the three models. As depicted in Table
1, CP-CLIP demonstrates superior classification accuracy across the datasets,
highlighting the effectiveness of the CP principle guided feature alignment.

3.3 Critical Area Identification

To investigate how the CP mechanism enhances image-text alignment, we uti-
lized Grad-CAM [11] visualization on images from various datasets to analyze
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Fig. 4. The impact of core ratios on classification accuracy across the five datasets.

how the model processes core and peripheral elements during inference. As de-
picted in Fig. 3, the original CLIP struggles to identify critical areas for disease
identification. For instance, in the case of malignancy from the INbreast dataset,
the area identified by CLIP is unrelated to breast cancer identification. In con-
trast, the CP-CLIP model not only focuses on lesion regions but also considers
minor areas for comprehensive reasoning. Besides, in the ChestXray dataset,
CLIP tends to highlight the spine area, whereas our CP-CLIP can identify the
areas related to disease identification.

3.4 Ablation Study

We conducted an ablation study on CP-CLIP with different core ratios. The
results, as shown in Fig. 4, demonstrate that our CP-CLIP outperforms the
baselines across a wide range of core ratios. The best performance appears with
a core ratio smaller than 1.0, indicating that CP graphs guided networks perform
better than the vanilla form represented in complete graphs. These results reveal
an interesting conclusion: the sparse connections of neurons brought by the CP
structure can perform better than fully connected neurons.

4 Conclusion

We introduce CP-CLIP, a novel framework that integrates the core-periphery
principle into the CLIP model by constructing an auxiliary core-periphery graph
guided neural network specifically designed for zero-shot medical image analysis.
This auxiliary network improves the fine-grained alignment between image and
text embeddings, directing the model’s attention towards critical information.
Experimental results on five distinct medical image datasets demonstrate the
effectiveness of CP-CLIP in medical image analysis.
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