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Abstract. Deep learning methods have proven useful in medical image
segmentation when deployed on independent and identically distributed
(iid) data. However, their effectiveness in generalizing to previously un-
seen domains, where data may deviate from the iid assumption, remains
an open problem. In this paper, we consider the single-source domain
generalization scenario where models are trained on data from a single
domain and are expected to be robust under domain shifts. Our approach
focuses on leveraging the spectral properties of images to enhance gen-
eralization performance. Specifically, we argue that the high frequency
regime contains domain-specific information in the form of device-specific
noise and exemplify this case via data from multiple domains. Overcom-
ing this challenge is non-trivial since crucial segmentation information
such as edges is also encoded in this regime. We propose a simple regular-
ization method, Lipschitz regularization via frequency spectrum (LRFS),
that limits the sensitivity of a model’s latent representations to the high
frequency components in the source domain while encouraging the sen-
sitivity to middle frequency components. This regularization approach
frames the problem as approximating and controlling the Lipschitz con-
stant for high frequency components. LRFS can be seamlessly integrated
into existing approaches. Our experimental results indicate that LRFS
can significantly improve the generalization performance of a variety of
models.

Keywords: Single source domain generalization · Lipschitz regulariza-
tion · medical image segmentation · frequency spectrum

1 Introduction

Biomedical artificial intelligence (AI) technologies have achieved significant im-
provements over the past two decades thanks to the recent development of deep
learning (DL) models. These technologies have the potential to bring a large
impact on the health care system by automating the time consuming and labor
intensive tasks to improve the efficiency and minimize the intra- or inter-reader
variability. The success of DL relies on availability of large size training data
(source domain) that need to be drawn from the same distribution with the
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testing data (target domain). However, data heterogeneity has become a major
challenge in biomedical AI when large training data is required. The hetero-
geneity is widespread amongst different medical image datasets due to scanners,
scanning parameters and subject cohorts, etc. A deep learning model trained on
one or multiple source domains might not work well on an unseen new domain
due to distribution discrepancy. Therefore, there is an unmet need to develop
reliable and effective models and algorithms to address domain inhomogeneity
in biomedical deep learning. We aim to address training data uncertainty and
tackle the data inhomogeneity problem from domain generalization perspective.
Domain generalization refers to the task of training a model on multiple source
domains and then applying it to an unseen target domain, without any or very
minimal domain-specific adaptation. The goal is to make deep learning models
more robust and applicable in real-world scenarios where the data may come
from diverse sources. The data scarcity and distribution discrepancy problems
are most prominent in the case of single-source domain generalization where
data from only a single source is available. This causes DL models that rely on
the existence of large training data to perform poorly when deployed on datasets
that deviates from the source domain distribution.

In the literature, frequency space methods have been utilized to increase the
generalizability of the models. Since phase spectrum of frequency space data con-
tains high-level semantics while the amplitude spectrum relate to domain-specific
features such as the style, in [14, 9, 6], researchers consider linear interpolations
of amplitude spectrum for data augmentation. In these works low frequency
(LF) components are especially targeted as these components relate more to the
overall domain-specific features such as the contrast of the images. Another ap-
proach is taken by [13, 2] where LF and high frequency (HF) components of the
original image are separated, and fused using a neural layer. In [7], the spectral
properties of feature maps at different layers of a neural network are utilized to
learn attention masks which helps in enhancing generalizable components.

In this paper, we also focus on domain-specific properties of frequency space
representations. Different from the existing work, our approach aims at overcom-
ing over-reliance on the high HF components while encouraging the networks to
utilize information encoded in middle frequency (MF) components. The rea-
son that we aim at avoiding the overfit to information encoded in HF regime
is because measurement device-specific noise is encoded in this regime. How-
ever, crucial information for medical image segmentation, i.e. the edges, are
also encoded in HF components. This necessitates a careful treatment of HF
information. Therefore, in the proposed approach we intend only to reduce the
sensitivity of the model to HF information and not discard it completely. Also,
we argue that MF components pertain to the structural information that shows
more domain-invariant characteristics, remarking that both LF and HF compo-
nents are likely to encode domain-specific information. Hence, we promote the
sensitivity to MF information during training. For these purposes, we consider
the Lipschitz constant as an indicator of a model’s sensitivity, and propose to reg-
ularize it by means of approximations of this quantity. The proposed approach,
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(a) I (b) HFR(I, 0.7) (c) HFR(I, 0.3)

(d) |I −HFR(I, 0.7)| (e) |I −HFR(I, 0.3)|

Fig. 1. Sample (a) original (I) and high-frequency removed (HFR) images for removed
frequencies thresholds (b) ν = 0.7 and (c) ν = 0.3 for a prostate slice from the RUNMC
dataset. Note the blurring edges with the increase in the removed HF components.
Corresponding differences with the original image are shown in (d) and (e). Images are
normalized for better visualization (best seen in digital).

Lipschitz Regularization via Frequency Spectrum (LRFS), is model-agnostic
and our experiments advocate for its effectiveness.

In Fig. 1 we visualize a slice from an MRI image (a), together with images for
which HF (b) and MF (c) information of the original are removed. The proposed
LRFS aims to reduce the sensitivity of a model to changes similar to that shown
in (d) while increasing the sensitivity for changes of type (e).

In what follows, we present the proposed method in Section 2, experimental
setup and results in Section 3, and our conclusions and future work in Section 4.

2 Proposed Method

The discrete Fourier transform of an image I of height H and width W is defined
as

F(I)(u, v) =
H−1∑
h=0

W−1∑
w=0

I(h,w) exp
{
−2πi

(
h

H
u+

w

W
v

)}
. (1)

We refer to the transformed image F(I) as the k-space data. We define a high
frequency removed (HFR) image as

HFR(I(h,w), ν) = |F−1(LP (F(I); ν))(h,w)|, (2)

where F−1 denotes the inverse discrete Fourier transform, LP is a low-pass
function

LP (F(I); ν)(u, v) =

{
0 if k(u, v) ≥ ν

F(I)(u, v) otherwise,
(3)



4 MF Arslan et al.

and k(u, v) = 1
2

(
u2

U2 + v2

V 2

)1/2

where U := H, V := W and the constant multi-
plier serves to restrict the range of k to [0, 1] rather than [0, 2]. In the proposed
method, as explained below, we make use of HFR images that correspond to
middle and high frequency removed images.

High-frequency removal may appear as a data augmentation method. Yet,
rather than introducing new synthetic information to a sample, existing informa-
tion in the k-space data is removed, which limits the number of possible images
to be generated. Further, HFR images do not necessarily represent realistic vari-
ations of the original sample; see for example Fig. 1 (c). Therefore, HFR may not
provide useful augmentations for end-to-end training. For these reasons, we use
HFR images to regulate only the feature extracting branch, and prevent training
the segmentation branch with possibly unrealistic images.

Definition. A function f : X → Y is called Lipschitz continuous with a Lip-
schitz constant κ > 0 if for all x1, x2 ∈ X, ∥f(x1) − f(x2)∥Y ≤ κ∥x1 − x2∥X
where ∥.∥X denotes the metric on X, and similarly for ∥.∥Y .

Computing the Lipschitz constant of a model with ReLU activations is an
NP-hard problem [12]. Thus, denoting the feature extracting (encoder) branch
of a segmentation network as Φ and the segmentation (decoder) branch as Ψ , we
approximate the Lipschitz constant of Φ for a fixed ν as

κν =
∥Φ(I)− Φ(HFR(I, ν))∥F

∥I −HFR(I, ν))∥F
(4)

where Φ is assumed to be Lipschitz. We consider the approximated quantity
κν as an indicator of the encoder’s sensitivity to high frequency removals for
frequency ν. The higher the κν , the more sensitive the encoder, and vice versa.

In order to reduce the sensitivity of Φ to high frequency (HF) components
we propose the following regularization term

LHF = ReLU
(

1

κ̂νHF

∥Φ(I)− Φ(HFR(I, νHF ))∥F
∥I −HFR(I, νHF ))∥F

− 1

)
= ReLU

(
κνHF

κ̂νHF

− 1

)
(5)

where κ̂νHF
is the reference Lipschitz constant chosen for HF components. How-

ever, it is possible for a network to trivially minimize this loss term without
any functional change by simply scaling Φ by a constant, which can be inverted
by Ψ . For example, for s ∈ R\{0}, the encoder-decoder pair (Φ̃, Ψ̃) defined as
Φ̃(x) := Φ(x)/s and Ψ̃(z) := Ψ(sz) can reduce the Lipschitz constant of Φ with-
out changing the behavior of Ψ ◦ Φ.

Thus, we introduce a second loss term that aims at increasing the sensitivity
to middle frequency (MF) components with the premise that MF components
carry structural information:

LMF = ReLU
(
1− 1

κ̂νMF

∥Φ(I)− Φ(HFR(I, νMF ))∥F
∥I −HFR(I, νMF ))∥F

)
= ReLU

(
1− κνMF

κ̂νMF

)
(6)
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Fig. 2. The encoder Φ maps the image space of dimensions H ×W to the latent space
of dimensions enc. The circular regions in the latent space are determined by image
space distances d1 and d2, and the predetermined Lipschitz constants κ1 and κ2 for HF
and MF components, respectively. For this example, our regularization scheme would
push Φ(IHF ) towards the pink region and Φ(IMF ) to the green region (indicated by
arrows).

where κ̂νMF
is the reference Lipschitz constant for MF components.

The loss function LMF is non-zero only when the estimated Lipschitz con-
stant κνMF

for MF components is lesser than κ̂νMF
, while LHF activates only

when κνHF
is larger than κ̂νHF

. For example, in Fig. 2, the image space dis-
tances d1 and d2 between the original image and HFR images determine circular
regions of radii κ1d1 and κ2d2 in the latent space where κ1 and κ2 are some
predetermined Lipschitz constants. In the given example, the latent representa-
tions Φ(IHF ) and Φ(IMF ) would be pushed towards the red and green regions,
respectively, by the proposed regularization losses. Once the latent representa-
tions fit into their corresponding target regions, no more regularization is applied
on them. When κ1 = κ2, the white region in-between is determined by the in-
formation encoded in the MF regime of the original image I.

Note that the proposed framework is similar to contrastive learning which
aims to keep positive pairs, i.e. a pair of samples sharing similar properties,
close to each other and keep negative pairs distant from one another. Despite
the similarity, our approach is different due to being based on Lipschitz constants
rather than absolute distances between latent representations.
The proposed objective function for an arbitrary network with loss function L
is

Lproposed = L+ λMFLMF + λHFLHF . (7)

In practice, we used λMF = λHF . The introduced losses LMF and LHF are
optimized through Φ(I) alone, that is, Φ(HFR(I, .)) are treated as constants.
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Fig. 3. Histograms of mean amplitudes of frequencies are domain-specific.

3 Experimental Setup and Results

3.1 Datasets

In our experiments we use T2-weighted prostate MRI data collected from six
different sites. The data from sites RUNMC and BMC are from NCI-ISBI13
dataset [1], HCRUDB is from I2CVB dataset [5], and UCL, BIDMC and HK
are from PROMISE12 dataset [8]. We utilize the preprocessed data used in
[10]1. During training, we only use slices with non-zero labels. We use RUNMC,
which is comprised of scans from 30 patients, as our source domain and follow a
70%/10%/20% train-validation-test split strategy to train the models.

We present amplitude versus frequency histograms of the considered datasets
in Fig. 3 to demonstrate domain-specific characteristics. In the presented plot,
the frequency range is indicated in normalized k-space coordinate norms. We
sampled k(u, v) at 100 discrete points {ki}100i=1 (bins of the histogram) from
slices that include a part of the target organ and calculate mean amplitudes
|F(I)(u, v)| where ki ≤ k(u, v) < ki+1.

3.2 Implementation details

The experiments are implemented using PyTorch and run on Colab’s T4 and
V100 GPUs. For the implementations of UNet [11] and UNet with residual con-
nections (ResUNet) [15] we utilize the MONAI framework. For both, we use in-
stance normalization (IN) rather than batch normalization, as IN yielded better
generalization performance in our experiments. UNet is initialized with default
parameters of the framework, and ResUNet is initialized with number of residual
units set to 2, and channel sizes set to (16, 32, 64, 128, 256) for each level where
1 https://liuquande.github.io/SAML/
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a stride of 2 is used for downsampling between the levels. For ResUNet++ [4]
we use the official implementation2. For UNet, ResUNet, and ResUNet++ the
number of prediction channels are set to 2. While evaluating a network’s per-
formance, we use argmax predictions to calculate Dice scores. All three of the
models are trained with L in Eq. (7) set to Dice loss, a batch size of 16 for 1000
epochs with Adam optimizer (with a momentum of 10−4), polynomial learning
rate decay (initial learning rate is 10−3 and power of the polynomial is 0.9), and
a linear warm-up scheduler used during the first 5 epochs. For BayeSeg [3], we
use the official implementation3. Due to memory limitations, we use a batch size
of 16. The rest of the training configuration are as in the original paper.

We use rotation, scaling, translation, elastic transformation, intensity normal-
ization, and Gaussian noise addition for data augmentation. Since the features
learned during the early stages are of generalizable nature, we apply Lipschitz
regularization after the 100th epoch for each model in order not to interfere
with or limit the learning process at early stages. For UNet, ResUNet and Re-
sUNet++, we used λMF = λHF = 3×10−4 and for BayeSeg 1×10−2 is used, cf.
Table 2. We considered the k(u, v) values in the interval [0, 0.3) as LF, [0.3, 0.7)
as MF, and [0.7, 1.0] as HF regimes, hence used νMF = 0.3 and νHF = 0.7. Fa-
voring simplicity, we set κ̂νMF

= κ̂νHF
= 1 and λHF = λMF in our experiments.

3.3 Results

We tested the proposed method in a controlled experiment fashion and com-
pared model performances4 with and without the Lipschitz regularization. We
tabulate our results in Table 1 in terms of Dice scores. For all four of the models,
Lipschitz regularization provided significant improvements on average target do-
main performances. Notably, for all models except ResUNet++, the Dice scores
on the source domain improved as well.

Although λHF = λMF = 3 × 10−4 may work well with different model
architectures, one might need to search for optimal parameters when the loss
function or the weight decay parameter is changed. In Table 2 we present how the
performance of BayeSeg, which uses cross-entropy loss together with a custom
variational loss, changes with respect to these parameters. Observe that the
average performance on targets suggest a consistent trend. The parameters yield
no distinguishable performance change for λ = 3× 10−4 with all changes being
well within the respective standard deviations, while λ = 1×10−1 yield a clearly
worse model. The optimal parameters for this model are probably included in
the range [3 × 10−3, 1 × 10−2], though we opted for 1 × 10−2 while searching
for parameters for this model. We also note that the standard deviations on
target domains are lowered when Lipschitz regularization is applied, especially
for the dataset HCRUDB (σ = 20.3 for baseline vs. σ = 7.6 for the best model),
indicating a more robust prediction across different patient and slice data.

2 https://github.com/DebeshJha/ResUNetPlusPlus
3 https://github.com/obiyoag/BayeSeg
4 https://github.com/kaptres/LRFS
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Table 1. Single-source domain generalization performances in terms of Dice scores for
a variety of models with and without Lipschitz regularization.

(source) (targets) Avg on

RUNMC BIDMC BMC HK UCL HCRUDB targets

UNet 88.09 47.19 78.34 77.98 82.40 80.20 73.22

+Lipschitz 88.51 60.51 80.44 85.85 81.56 79.75 77.62

ResUNet 86.97 56.12 79.03 82.75 78.61 77.57 74.82

+Lipschitz 88.61 62.94 80.32 83.62 79.86 80.74 77.51

ResUNet++ 89.17 60.71 69.95 86.85 78.20 66.87 72.51

+Lipschitz 88.22 64.52 73.31 85.93 77.33 78.74 75.97

BayeSeg 85.0 71.2 82.6 82.0 79.7 73.5 77.8

+Lipschitz 87.4 76.9 83.3 84.8 82.2 82.5 81.94

Table 2. Model performances in terms of Dice scores for different loss weight param-
eters used with BayeSeg. The standard deviations are calculated on the Dice scores of
all the slices in a domain.

(source) (targets) Avg. on

λHF = λMF RUNMC BIDMC BMC HK UCL HCRUDB targets

0 84.9±3.6 71.2±7.6 82.6±5.5 82.0±3.5 79.7±5.6 73.5±20.3 77.8

3× 10−4 85.9±4.0 70.7±8.1 82.4±5.5 79.4±5.9 80.7±4.5 74.7±15.6 77.58

3× 10−3 86.1±5.3 73.2±9.5 84.1±4.7 84.8±4.6 82.6±5.6 82.4±7.6 81.42

1× 10−2 87.4±4.0 76.9±5.8 83.3±5.0 84.8±3.8 82.2±5.1 82.5±7.6 81.94
3× 10−2 87.5±4.7 59.6±12.8 78.5±8.1 82.7±5.2 78.2±5.2 80.8±6.9 75.96

1× 10−1 83.1±6.7 62.8±10.4 72.3±11.4 78.9±8.1 74.4±8.0 77.4±9.9 73.16

4 Conclusions and Future Work

In this work, we proposed Lipschitz regularization via frequency spectrum (LRFS)
which is a simple yet effective regularization strategy for improving the gener-
alizability of DL models. LRFS is generic in its nature and can be utilized to
regularize various model architectures to acquire significant performance im-
provements without compromising the performance on the source domain, as
demonstrated by our experiments.

Despite being initially tailored for medical image segmentation LRFS can
provide generalizability for other DL tasks. Thus, for future work, we plan to
explore LRFS’s utility in diverse DL applications.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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