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Abstract. Low-dose computed tomography (LDCT) reduces the risks
of radiation exposure but introduces noise and artifacts into CT im-
ages. The Feature Pyramid Network (FPN) is a conventional method
for extracting multi-scale feature maps from input images. While up-
per layers in FPN enhance semantic value, details become generalized
with reduced spatial resolution at each layer. In this work, we propose a
Gradient Guided Co-Retention Feature Pyramid Network (G2CR-FPN)
to address the connection between spatial resolution and semantic value
beyond feature maps extracted from LDCT images. The network is struc-
tured with three essential paths: the bottom-up path utilizes the FPN
structure to generate the hierarchical feature maps, representing multi-
scale spatial resolutions and semantic values. Meanwhile, the lateral path
serves as a skip connection between feature maps with the same spatial
resolution, while also functioning feature maps as directional gradients.
This path incorporates a gradient approximation, deriving edge-like en-
hanced feature maps in horizontal and vertical directions. The top-down
path incorporates a proposed co-retention block that learns the high-level
semantic value embedded in the preceding map of the path. This learning
process is guided by the directional gradient approximation of the high-
resolution feature map from the bottom-up path. Experimental results
on the clinical CT images demonstrated the promising performance of
the model. Our code is available at: https://github.com/liz109/G2CR-
FPN.

Keywords: LDCT denoising · Retention · Feature pyramid · Directional
gradients.

1 Introduction

Compared with the normal-dose computed tomography (NDCT), low-dose com-
puted tomography (LDCT) reduces the risks of ionizing radiation exposure but
introduces noise and artifacts into the reconstructed images. A general solution
is to develop denoising techniques to reduce or eliminate undesirable noise from
CT images to improve their clarity and diagnostic values. Along this direction,
deep learning models have been investigated for CT denoising, which learns an
intrinsic feature map between noisy and clean CT images [7, 8, 28].
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A pyramid structure [11], illustrated as the bottom-up path in Fig. 1 (A),
stands out as a widely employed backbone for feature extraction. Compared
with the columnar structure [2], where feature maps maintain the same size
as the input image, the pyramid structure is cost-effective for addressing dense
prediction tasks. This is because (1) the memory and computational costs are
relatively low for the same input image size [24], and (2) feature maps are at
different spatial scales and channel complexities, enabling the extraction of both
coarse-grained and fine-grained information [15]. This versatility is advantageous
for tasks at pixel level, where objects of interest may exhibit variations in size
or scale within images while preserving consistent patterns, as often encoun-
tered in CT images. In leveraging feature maps learned from a neural network,
many researchers have explored the utilization of the attention mechanism [22].
The self-attention operation depicts the intra-feature learning for a given in-
put, while the guided-attention operation learns the inter-feature interactions
across multiple inputs. Both of the operations, along with their combined form
known as co-attention [13, 27, 29], exhibit competitive performance in modeling
various computer vision tasks [2,12,21,23]. Notably, Sun et al. [19] recently rede-
fined the attention mechanism as the retention mechanism in Natural Language
Processing, showcasing competitive performance with the traditional attention
mechanism and overcoming the quadratic computation complexity associated.
As a followup work, in this paper we explore the possibility of the retention
mechanism in pixel-level dense tasks, specifically focusing on inter- and intra-
feature learning within the pyramid structure network. Targeting on model-based
LDCT image denoising, previous studies often resulted in over-smoothed outputs
with blurry edges. While edge enhancement methods [4,5,10] are introduced to
preserve structural details in CT images, they compromise the diversity of fea-
ture maps and are confined to a fixed perceptual field, resembling columnar-like
structures.

Thus, we draw inspiration from hierarchical feature maps, introducing the co-
retention mechanism in two parts. First, we propose a self-retention operation for
intra-feature learning, focusing on the integral perceptual field of a feature map
itself. This operation captures dependencies within the feature map, enhancing
its interpretability. Meanwhile, we introduce a guided-retention operation for
inter-feature learning, emphasizing mutual perceptual fields between two fea-
ture maps. This operation uncovers interdependencies between a feature map
with high-level semantic value and a feature map with high resolution. Specif-
ically, we employ a directional gradient approximation method, similar to the
edge detection method [18], on the high-resolution feature map. This process
generates edge-like enhanced feature maps for adaptive guided feature learn-
ing, wherein the method decomposes the high-resolution features into horizontal
and vertical directions. As a result, our proposed model, the Gradient Guided
Co-Retention Feature Pyramid Network (G2CR-FPN), effectively addresses the
LDCT denoising through comprehensive feature learning and detail preservation.
The key contributions are summarized as follows: 1) We propose a G2CR-FPN,
attempting to generate multi-scale feature maps and learn intrinsic information
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by bridging feature maps with high-level semantic value and high resolution for
LDCT denoising. The model exhibits promising performance in the experimen-
tal results. 2) We introduce a co-retention mechanism for pixel-level dense tasks,
comprising self-retention and guided-retention operations. The new mechanism
focuses on intra- and inter-feature learning within hierarchical feature maps. 3)
We validate the effectiveness of directional gradient approximation in feature
maps. The introduced edge-like directions enhance structures within the feature
maps, mitigating over-smoothing issues.

2 Methods

2.1 Overall Structure

Our objective is to introduce feature learning techniques for the pyramid struc-
ture of feature maps, enhancing interpretability and preserving details for pixel-
level denoising tasks. The overall structure of G2CR-FPN is illustrated in Fig. 1
(A), and a typical level of G2CR-FPN, depicting the intra- and inter-feature
learning among feature maps, is shown in Fig. 1 (B).
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Fig. 1. Overview of the G2CR-FPN. (A) the overall structure and paths of the model.
(B) the i-th level of G2CR-FPN, where connections between feature maps labeled as
BU represent the bottom-up path, connections between TD represent the top-down
path, and connections between BU and TD represent the lateral path. (C) multi-scale
retention within a Decoder.

The proposed structure comprises five paths. To begin with, an image of
size H × W × 1 is processed into a feature map BU1 ∈ RH1×W1×C1 through
an input path. The path consists of two convolutional layers, each is connected
to batch normalization and ReLU activation. Moving through the bottom-up
path, a residual encoder is introduced to control the scales of feature maps,
resulting in more generalized details. Meanwhile, the lateral path acts as a skip
connection between feature maps with the same spatial resolution, while also
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emphasizing directional gradient approximation represented as horizontal and
vertical directions. Advancing through the top-down path, a co-retention decoder
is introduced to incorporate high-level semantic value. This learning process is
guided by directional gradient approximation from the high-resolution feature
map. In the end, an output path integrates features into a denoised image of size
H×W×1. The output path consists of operations including layer normalization,
a convolutional layer, batch normalization, and another convolutional layer.

2.2 Residual Encoder

The bottom-up path involves feed-forward convolutional computations for fea-
ture extraction, generating a pyramid of feature maps at various scales using
a spatial shrinking factor (α) and a channel expanding factor (β). Inspired by
the ResNets [6], a residual encoder is employed to learn input features. The en-
coder includes a residual connection and sequences of convolutional layers, batch
normalization, and ReLU activation (see Fig. 1 (B)). Specifically, the second con-
volutional layer in the block reduces spatial dimensions using a stride of α, while
the last layer and residual connection expand channels via β. We define a stack
of encoders as a level in the pyramid structure where the output sizes of the en-
coders are consistent, and opt for the last feature map at each level. We denote an
encoder layer as Encoderi, with the input feature map labeled BUi ∈ RHi×Wi×Ci

and the output feature map as BUi+1 ∈ R(Hi/α)×(Wi/α)×(βCi).

2.3 Directional Gradient Approximation

The purpose of the gradient approximation in the lateral path is to empha-
size feature semantics with high spatial frequency and enrich the expression of
feature maps in multiple view directions. In this work, we introduce a modifica-
tion of the Sobel edge detection operator [18], which computes image intensity
gradients through isotropic 3x3 kernels. The kernels now work with learnable
factors, enabling adaptive optimization during the training process to generate
edge-like feature maps. In the directional gradient operation Gradienti, gradi-
ent approximations are computed in horizontal and vertical kernels, respectively.
The gradient approximations are expressed as

BUHor
i = (wHor

i ·

−1 0 1
−2 0 2
−1 0 1

)∗BUi, BUV er
i = (wV er

i ·

−1 −2 −1
0 0 0
1 2 1

)∗BUi, (1)

where BUHor
i and BUV er

i ∈ RHi×Wi×Ci respectively denote the horizontal and
vertical gradient approximations, wHor

i and wV er
i ∈ R are learnable factors, and

∗ denotes the convolution operation.

2.4 Co-Retention Decoder

The retention mechanism is a pivotal module in the Retentive Network [19],
encoding sequences in an autoregressive manner and exhibiting dual forms of
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recurrence and parallelism. Given an input sequence X = [x1, ..., x|x|] ∈ R|x|×d

with an embedding dimension d, we formulate a sequence-to-sequence mapping
f : Xn 7→ On along with linear representations of value (Vn), query (Qn) and
key (Kn) through state Sn. The linear representations are formulated as

V = XWV , Q = (XWQ)⊙Θ, K = (XWK)⊙Θ, (2)

where WV ,WQ,WK ∈ Rd×d are learnable weighting matrices, Θ is Extrapolat-
able Position Embedding (xPos) proposed by Sun et al. [20], Θ is the conjugate
of Θ, and ⊙ is the element-wise multiplication.

Considering the parallel manner, the retention mechanism can be written as

Retention(X) = GN((QK⊺ ⊙D)V ), Dnm =

{
γn−m, n ≥ m

0, n < m
, (3)

where GN is short for Group Normalization [26], D ∈ R|x|×|x| denotes a decay
mask, and γ is a scalar.

Instead of employing a single parallel retention mechanism to obtain represen-
tations as value, query, and key, characterized by parameter matrices WV ,WQ

and WK , it is advantageous to project the representations H times in each layer,
each time using different parameter matrices WV

h ,WQ
h and WK

h ∈ Rdhead×dhead ,
where dhead = d/H. In addition, the retention is expanded into multi-scale reten-
tion (MSR), involving H retention heads operating in parallel with the scalars
Γ =

{
γh

}H

h=1
, respectively. Then, the outputs are concatenated and normalized.

The MSR layer is defined as

Headh = Retention(X, γh),

Y = GN(Concat(Head1, ...,HeadH)),

MSR(X) = (Swish(XWG)⊙ Y )WO,

(4)

where WG and WO ∈ Rd×d are learnable matrices, GN normalizes each head
separately, and Swish [16] activation improves the non-linearity of layers. To
incorporate the co-retention mechanism, which is designed to receive different
sequences of token embeddings as input, we have to redefine the function as

Headh = Retention(V,Q,K, γh),

MSR(V,Q,K) = (Swish(VWG)⊙ Y )WO,
(5)

where Y follows the same operations as shown in Equation (4).
In the following, we introduce the components of a co-retention decoder

Decoderi, as shown in Fig. 1. The decoder comprises self-retention and guided-
retention operations. Operations are alternatively connected, accompanied by
layer normalization (LN) and a residual connection. For an input feature map
TDi+1 ∈ R(Hi/α)×(Wi/α)×(βCi), we use an upsampling layer followed by a patch
embedding operation before each decoder block. Inspired by the ViT [2], the
patch embedding operation involves partitioning the input into 2D patches and
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flattening/reshaping them into the patch embeddings ˜TDi+1 ∈ RK2
i ×P 2×Ci .

Specifically, we partition an input into K2
i evenly spaced patches by a fixed patch

size of P × P in different levels, enabling inter-feature learning within matched
perceptual fields among feature maps. The input is partitioned using a kernel
size Ki = Hi/P = Wi/P in a convolutional layer. The embedding operation is
also employed in the directional gradient approximations, resulting B̃U

Hor

i and
B̃U

V er

i . The embedded horizontal and vertical approximations respectively serve
as Q and K in the second MSR of the decoder.

3 Experiments and Results

3.1 Experimental Setup

Datasets: We conduct experiments on the dataset from the 2016 NIH-AAPM-
Mayo Clinic LDCT Grand Challenge [14], consisting of 2,378 CT images with a
slice thickness of 3.0 mm. The dataset was collected from ten different patients.
We randomly select subject ‘L506’ for testing, and images from the remaining
subjects are for training.

Implementation details: In the G2CR-FPN model, there are five levels,
denoted as L = 5. At each level, the structure includes a stack of two encoders
(N = 2) in the BU path and a single decoder (M = 1) with H = 8 heads in the
TD path. The spatial factor (α) and the channel factor (β) are both set to 2.
The dimension of each patch is set as P = 32. The model is trained with MSE
loss function and Adam optimizer with default settings for at most 200 epochs,
and the best model with the minimal loss is saved. The learning rate is initially
set as 0.001 and is halved for every 3,000 steps in the training stage.

Evaluation metrics: For quantitative assessments, we employ two con-
ventional metrics: root mean square error (RMSE) and structural similarity
(SSIM) [25]. Additionally, we introduce the Edge Structural Similarity Index (E-
SSIM) to evaluate the performance of the gradient approximation operation and
the guided-retention operation. E-SSIM combines the SSIMs for both edge and
non-edge regions, where E-SSIM = 0.5× edge-SSIM +0.5×non-edge-SSIM .
The edges are detected by the Sobel filter. The average results for the testing
subject are presented within the Hounsfield Unit (HU) window of [−160, 240].

3.2 Experimental Results

To evaluate the performance of the proposed G2CR-FPN model, we compare it
against several state-of-the-art models: REDCNN [1], MAPNN [17], SwinIR [9],
and SUNet [3]. The parameters for the competing methods are configured accord-
ing to the guidelines disclosed in the corresponding papers. Table 1 summarizes
the quantitative results, showing the mean±SDs (standard deviations) from the
testing images using these methods. The LDCT images initially had the lowest
scores due to the degradation from low dose radiation. All methods improved
the scores, with G2CR-FPN achieving the best scores.
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Table 1. Comparison with the SOTA and Ablation Study (mean±SDs). Bold:Best.

Method RMSE ↓ SSIM ↑ E-SSIM ↑ edge-SSIM ↑

LDCT 10.4833± 1.5358 0.9359± 0.0170 0.9164± 0.0322 0.9216± 0.0334

REDCNN 9.0390± 2.1339 0.9466± 0.0224 0.9257± 0.0283 0.9287± 0.0300

MAPNN 8.1332± 1.6802 0.9528± 0.0188 0.9303± 0.0256 0.9319± 0.0267

SwinIR 7.5886± 1.6717 0.9556± 0.0182 0.9317± 0.0248 0.9341± 0.0259

SUNet 7.3576± 1.5899 0.9584± 0.0175 0.9331± 0.0250 0.9376± 0.0257

CA-FPN 7.7318± 1.6450 0.9552± 0.0179 0.9301± 0.0249 0.9328± 0.0258

G2CA-FPN 7.4341± 1.6191 0.9559± 0.0186 0.9346± 0.0254 0.9362± 0.0263

CR-FPN 7.4127± 1.5902 0.9585± 0.0172 0.9340± 0.0242 0.9373± 0.0251

G2CR-FPN 7.0516± 1.5358 0.9602± 0.0170 0.9400± 0.0253 0.9420± 0.0258

Moreover, a representative slice with lesions from Case L506 is selected to
evaluate the performance of the aforementioned models. As shown in Fig. 2, the
first row displays the denoised images from each model, with the red box indi-
cating the region of interest (ROI) zoomed in the second row. It can be clearly
observed that all the methods suppress image noise to various degrees. The
SUNet and G2CR-FPN generate clearer noise-free images, and they can better
discriminate low contrast regions in soft tissues than other models. To further
differentiate the performance of the models, we conduct noise power spectrum
(NPS) analysis on Fig. 2. As depicted in Fig. 3 (A), all images exhibit simi-
lar power spectra at low spatial frequencies, while differences became visible as
frequencies increase. The G2CR-FPN achieves the lowest noise in the full fre-
quency range. In summary, our proposed G2CR-FPN model is competitive with
the state-of-the-art methods in LDCT denoising, evidenced by both quantitative
metrics and qualitative visual results.

Fig. 2. Qualitative comparison from Case L506. The red boxes indicate the zoomed
ROIs and the arrows point to the target lesions. The display window is [-160,240] HU.
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(A) (B)

Fig. 3. Noise power spectrum analysis of the representative slice for (A) the comparison
with the SOTA methods, and (B) the ablation study.

3.3 Ablation Study

As the aforementioned, the retention network is a successor to the transformer ar-
chitecture. Our study aims to demonstrate the effectiveness of the Co-Retention
module within the G2CR-FPN model by comparing it to the attention mech-
anism [22]. Specifically, we evaluate the Co-Retention decoder (G2CR-FPN)
against the Co-Attention decoder (G2CA-FPN) within the architecture shown in
Fig.1 (B). Additionally, we aim to validate the impact of the trainable directional
gradient approximation in the lateral path. To do so, we compare with models
without gradient operations while maintaining consistent remaining structures,
labeled as CR-FPN and CA-FPN respectively.

The quantitative results are also summarized in Table 1. The Co-Retention-
based models (G2CR-FPN and CR-FPN) outperform the Co-Attention-based
models (G2CA-FPN and CA-FPN) in terms of both SSIM and RMSE. Further-
more, the inclusion of gradient operations leads to quantitative improvements in
both G2CA-FPN and G2CR-FPN models. Although the improvement between
G2CR-FPN and CR-FPN is small in terms of SSIM (0.0017), the RMSE is re-
duced by 5%, demonstrating that the combined mechanism is better and there-
fore the best model for LDCT denoising. A detailed examination of the outputs
is provided in Fig. 3 (B) in terms of NPS analysis. All the images denoised using
our methods exhibit significantly lower power spectra than the LDCT image.

4 Conclusions

We introduce a novel gradient guided co-retention feature pyramid network
(G2CR-FPN) for LDCT image denoising and demonstrate how the proposed
directional feature gradient approximation and co-retention mechanisms coop-
eratively learn feature maps in high resolution and high semantic value. Specif-
ically, we show how the gradient approximation operation perceives a feature
map in horizontal and vertical directions, and how the co-retention mechanism
can tackle high inter- and intra- feature interactions among different scales of
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levels in the pyramid structure network. Our experimental results indicate the
potential of these mechanisms and achieve encouraging results for LDCT denois-
ing.
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