
Development of Effective Connectome from Infancy to 
Adolescence 

Guoshi Li1[0000-0002-8984-4722], Kim-Han Thung1, Hoyt Taylor1, Zhengwang Wu1, Gang 
Li 1, Li Wang1, Weili Lin1, Sahar Ahmad1, and Pew-Thian Yap1*[0000-0003-1489-2102] 

1 Department of Radiology and Biomedical Research Imaging Center (BRIC), University of 
North Carolina at Chapel Hill, Chapel Hill, USA 

ptyap@med.unc.edu 

Abstract. Delineating the normative developmental profile of functional con- 
nectome is important for both standardized assessment of individual growth and 
early detection of diseases. However, functional connectome has been mostly 
studied using functional connectivity (FC), where undirected connectivity 
strengths are estimated from statistical correlation of resting-state functional MRI 
(rs-fMRI) signals. To address this limitation, we applied regression dynamic 
causal modeling (rDCM) to delineate the developmental trajectories of effective 
connectivity (EC), the directed causal influence among neuronal populations, in 
whole-brain networks from infancy to adolescence (0-22 years old) based on 
high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human 
Connectome Project Development (HCP-D). Analysis with linear mixed model 
demonstrates significant age effect on the mean nodal EC which is best fit by a 
“U” shaped quadratic curve with minimal EC at around 2 years old. Further anal-
ysis indicates that five brain regions including the left and right cuneus, left 
precuneus, left supramarginal gyrus and right inferior temporal gyrus have the 
most significant age effect on nodal EC (p < 0.05, FDR corrected). Moreover, the 
frontoparietal control (FPC) network shows the fastest increase from early child-
hood to adolescence followed by the visual and salience networks. Our findings 
suggest complex nonlinear developmental profile of EC from infancy to adoles-
cence, which may reflect dynamic structural and functional maturation during 
this critical growth period. 
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1 Introduction 

The human brain development undergoes a unique and dynamic process from birth 
through adolescence, encompassing remarkable structural and functional changes. It 
has been well recognized that the period immediately after birth offers a critical time 
window for the establishment of both structural and functional architectures through a 
series of complex neurobiological processes including synaptogenesis, myelination, 
and axonal and synaptic pruning [1, 2]. Alongside with the neural substrate modifica-
tions, functional brain networks, revealed by resting-state functional MRI (rs-fMRI), 
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start to develop in a sequential, coordinated and hierarchical manner where the primary 
sensory systems (visual, sensorimotor and auditory networks) develop first and exhibit 
adult-like topologies in full-term newborns [3]. Adverse early life events could impose 
a long-lasting effect on brain network function by disrupting critical developmental 
process, resulting in developmental disorders with clinical presentations during child-
hood and later stages of life [2, 4]. 

The maturation and refinement of structural and functional brain networks continue 
from infancy to childhood and adolescence, another critical period for development. It 
has been shown that the brain’s functional networks switch from an anatomical- domi-
nant structure to a distributed architecture with elevated connectivity of the network 
hub [5, 6], indicating enhanced functional integration during development. Paralleled 
with the maturation of functional organization, children begin to develop cognitive, 
emotional and social abilities including self-awareness, autobiographical memory and 
moral judgement [7]. Thus, it is of great importance to delineate the developmental 
trajectory of the functional organization from infancy to adolescence for both standard-
ized assessment of individual growth and early detection of diseases.  

The development of large-scale functional networks has been well described in in- 
fancy [3], childhood and adolescence [8, 9] using fMRI-based functional connectivity 
(FC). For example, studies found increased FC within the default mode network (DMN) 
in older children than in younger children [8]. However, it should be noted that FC, 
defined as the statistical correlation of blood-oxygen-level-dependent (BOLD) signals, 
represents undirected synchronizations rather than directed causal influence (i.e., effec-
tive connectivity). As effective connectivity (EC) builds on a generative model of neu-
ral interaction, it can potentially provide more mechanistic insights underlying cogni-
tive development [10]. 

Existing developmental studies based on EC networks is scare, partially due to the 
high computational burden associated with EC computation, especially in large-scale 
networks. Indeed, traditional EC models such as Dynamic Causal Modeling (DCM) are 
computationally intensive and usually restricted to small networks with a few brain 
regions [11]. Fortunately, such limitations have been largely overcome with the intro-
duction of regression DCM (rDCM; [12-14]) which allows the construction of EC net-
works in large-scale brain-wide systems. In this study, we applied rDCM to a high-
quality rs-fMRI dataset from BCP and HCP-D projects to delineate the developmental 
trajectory of effective connectome from infancy to adolescence. 

2 Methods 

2.1 Participants 

We utilized rs-fMRI data from the BCP [15] and HCP Development (HCP-D; [16]). 
The rs-fMRI data included 318 subjects (158 females/160 males; age: 16 days-22 years) 
with a total of 428 scans (longitudinal scans in BCP). The BCP data was processed 
using an infant-dedicated pipeline [17] and the HCP-D data was processed by the HCP 
pipeline [18]. Regional averaged BOLD time series were extracted using the Desikan-
Killiany atlas [19] with 68 cortical regions of interest (ROIs) grouped into six functional 
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networks (visual, somatomotor, salience, limbic, frontoparietal control, and default 
mode [20]). 

2.2 The Original DCM 

The original DCM uses a bilinear state model [11]: 

𝑥̇𝑥(𝑡𝑡) = [𝐴𝐴 + ∑ 𝐵𝐵𝑘𝑘𝑘𝑘 𝑢𝑢𝑘𝑘(𝑡𝑡)]𝑥𝑥(𝑡𝑡) + 𝐶𝐶𝐶𝐶(𝑡𝑡)                                  (1) 

where x(t) denotes the hidden neuronal states for multiple brain regions, u(t) represents 
exogenous experimental input, and the matrix C models the influence of external inputs 
on neuronal activity. A is the baseline EC and 𝐵𝐵k represents the modulation on EC due 
to the input 𝑢𝑢k(𝑡𝑡). DCM employs a biophysical hemodynamic model to translate the 
regional neural activity 𝑥𝑥i(𝑡𝑡) to observed BOLD response 𝑦𝑦i(𝑡𝑡) [11]. 

𝑑𝑑𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝜅𝜅𝑠𝑠𝑖𝑖(𝑡𝑡) − 𝛾𝛾(𝑓𝑓𝑖𝑖(𝑡𝑡) − 1)                                      (2) 

𝑑𝑑𝑓𝑓𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝑖𝑖(𝑡𝑡)                                                                              (3)  

𝜏𝜏 𝑑𝑑𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖(𝑡𝑡) − 𝑣𝑣𝑖𝑖
1
𝛼𝛼(𝑡𝑡)                                                              (4) 

𝜏𝜏 𝑑𝑑𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖(𝑡𝑡)
𝜌𝜌
�1 − (1 − 𝜌𝜌)1/𝑓𝑓(𝑡𝑡)� − 𝑞𝑞𝑖𝑖(𝑡𝑡)

𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑣𝑣𝑖𝑖
1
𝛼𝛼(𝑡𝑡)                           (5) 

where 𝑠𝑠i(𝑡𝑡) is the vasodilatory signal, 𝑓𝑓i(𝑡𝑡) is the blood flow, 𝑣𝑣i(𝑡𝑡) is the blood volume 
and 𝑞𝑞i(𝑡𝑡) is the deoxyhemoglobin content. 𝜅𝜅 is the rate of decay, 𝛾𝛾 is the rate of flow-
dependent elimination, 𝜏𝜏 is the hemodynamic transit time, 𝛼𝛼 is the Grubb’s exponent 
and 𝜌𝜌 is the resting oxygen extraction. The BOLD response is calculated as: 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑣𝑣0(𝑘𝑘1�1 − 𝑞𝑞𝑖𝑖(𝑡𝑡)� + 𝑘𝑘2(1 − 𝑞𝑞𝑖𝑖(𝑡𝑡)/𝑣𝑣𝑖𝑖(𝑡𝑡)) + 𝑘𝑘3(1 − 𝑣𝑣𝑖𝑖(𝑡𝑡)))         (6) 

where 𝑣𝑣0 is the resting blood volume fraction, and 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 are the intravascular, 
concentration and extravascular coefficients, respectively. DCM then estimates the pa-
rameters A, 𝐵𝐵k and C based on fMRI data. 

2.3 The Regression DCM 

Regression DCM is a novel variant of DCM [12-14]. To achieve high computational 
efficiency, rDCM makes several simplifications from the original DCM: (1) employing 
a linear DCM model (i.e., no modulation component); (2) converting the linear DCM 
equations from the time domain to the frequency domain using Fourier transformation; 
(3) replacing the nonlinear hemodynamic model with a linear hemodynamic response 
function (HRF); and (4) assuming partial independence between connectivity parame-
ters. With such assumptions, rDCM treats model inversion in DCM as a special case of 
Bayesian linear regression problem, leading to the following likelihood function [14]: 
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𝜌𝜌(𝑦𝑦|𝜃𝜃, 𝜏𝜏,𝑋𝑋) = �𝑁𝑁(𝑌𝑌𝑟𝑟;𝑋𝑋𝜃𝜃𝑟𝑟 , 𝜏𝜏𝑟𝑟−1𝐼𝐼𝑁𝑁×𝑁𝑁)
𝑅𝑅

𝑟𝑟=1

 

 𝑌𝑌𝑟𝑟 = (𝑒𝑒2𝜋𝜋𝜋𝜋
𝑚𝑚
𝑁𝑁 − 1) 𝑦𝑦�𝑟𝑟

𝑇𝑇
                                                   (7) 

𝑋𝑋 = [𝑦𝑦�1,𝑦𝑦�2, …𝑦𝑦�𝑅𝑅 ,ℎ�𝑢𝑢�1,ℎ�𝑢𝑢�2, … ,ℎ�𝑢𝑢�𝐾𝐾] 

        𝜃𝜃𝑟𝑟 = [𝑎𝑎𝑟𝑟,1,𝑎𝑎𝑟𝑟,2, …𝑎𝑎𝑟𝑟,𝑅𝑅 , 𝑐𝑐𝑟𝑟,1, 𝑐𝑐𝑟𝑟,2, … 𝑐𝑐𝑟𝑟,𝐾𝐾] 

where yr is the measured BOLD signal in region r, Yr is the Fourier transformation of 
the temporal derivative of the BOLD signal, X is the design matrix, uk represents the kth 
experimental input (hat symbol indicates discrete Fourier transform), θr is the vector of 
parameters (connection parameters 𝑎𝑎r,1, 𝑎𝑎r,2,… 𝑎𝑎r,R and all driving input parameters 𝑐𝑐r,1, 
𝑐𝑐r,2,… 𝑐𝑐r,K to region r). Also, τr represents the noise precision parameter for region r and 
𝐼𝐼NXN is an identity matrix. Using the likelihood function (7), rDCM efficiently estimates 
the parameters by iteratively updating a set of analytical Variational Bayes (VB) equa-
tions [14]. We focused EC estimation on the most pronounced edges based on FC [12, 
14]. Specially, we averaged the FC matrices of all 428 scans and retained the strongest 
edges that have a FC value of greater than 0.4; weaker edges were removed. 

2.4 Statistical Analysis 

To characterize the influence of EC on nodes, we defined three nodal metrics: (1) net 
nodal EC, (2) excitatory nodal EC, and (3) inhibitory nodal EC. The net nodal EC is 
computed as the summation of all incoming EC to a particular node, while excitatory 
(inhibitory) nodal EC is calculated as the summation of all incoming excitatory (inhib-
itory) EC to a particular node. To quantify the effects of age on nodal EC, we used a 
linear mixed model [8] which can characterize the age- related continuous change. 
Given the potential linear or quadratic effects of age, we considered both a linear model 
and a quadratic model [8]. The linear model is defined as: 

Yij = βO+bi+(βage+bage,i)ageij+βsexSexi+εij, i = 1, 2,…, N                     (8) 
The quadratic model is defined as: 

            Yij=βO+bi+(βage1+bage,i1)ageij+(βage2+bage,i2)age2 +βsexSexi+εij, 
i = 1, 2,…,                        (9) 

where 𝑌𝑌ij represents the measurement of subject i at the jth scan, 𝛽𝛽0 is the fixed inter-
cept, 𝑏𝑏i the random effect on intercept, 𝛽𝛽age denotes the fixed age effect, 𝑏𝑏age, i repre-
sents the random effect on age, and 𝜀𝜀ij is the residual. We used Akaike information 
criterion (AIC) value to select the best fit model [8]. Also, we divided the subjects into 
five different age groups: (1) Neonatal (0-0.5 year); (2) Late infancy (0.5-1 year); (3) 
Early childhood (1-6 years); (4) Late childhood (6-12 years) and (5) Adolescence (12-
22 years) [21]. Comparison on nodal EC between different age groups was conducted 
by a two-sample t-test. Multiple comparisons were corrected by using the false dis-
covery rate (FDR) method with q < 0.05. 
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3 Results 

3.1 Nonlinear Evolution of EC from Infancy to Adolescence 

The EC evolves from infancy to adolescence in a nonlinear fashion. The average EC 
among neonatal, late infancy and adolescence is showed in Fig. 1A, B, and C, respec-
tively. We observed that for all three developmental phases, the EC exhibits modular 
structure where stronger EC edges exist within the same network than between different 
networks, similar to a previous DCM study [22]. Visual examination indicates the ex-
citatory EC reduces from neonatal to late infancy and increases in adolescence (com-
pare the yellow edges among Fig. 1A, B and C), while the inhibitory EC heightens from 
neonatal to late infancy and reduces in adolescence (compare the black edges among 
Fig. 1A, B and C). Such observation is confirmed by the summary plot of the average 
net nodal EC (Fig. 1D). The net nodal EC decreases significantly from neonatal to late 
infancy and then increases significantly to late childhood and adolescence (p < 0.05, 
FDR corrected). The increase from early childhood to adolescence is also significant (p 
< 0.05, FDR corrected). Thus, effective connectome reduces first from early to late 
infancy before gradually increasing towards adolescence. 

 

 
Fig. 1. Evolution of effective connectivity (EC) from infancy to adolescence. Average 
EC in neonatal (A), late infancy (B) and adolescence (C). (D) Average net nodal EC in 
different age groups. VIS: visual network; SOM: somatomotor network; SAL: salience 
network; LIM: limbic network; FPC: frontoparietal control network; DMN: default 
mode network. Error bars indicate standard errors. Double stars indicate corrected sig-
nificance (p < 0.05). 
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Fig. 2. Developmental trajectory of the mean net nodal EC with age. Each blue dot 
represents the mean net nodal EC for an individual scan. Age is displayed in log scale. 

3.2 Significant Age Effect on Nodal EC 

Comparison of the AIC indicates the quadratic model is the best fit model for the mean 
net nodal EC. The developmental trajectory of the mean net nodal EC among all 68 
ROIs is displayed in Fig. 2 where the nodal EC decreases first and then increases with 
age with the minimal EC at around 2 years old. Linear mixed model indicates signifi-
cant age effect on the mean net nodal EC (p < 0.05, FDR corrected), while there is no 
significant sex effect on the mean net nodal EC (p > 0.05). Application of the linear 
mixed model on individual net nodal EC shows five brain regions have the most sig-
nificant age effect on net nodal EC (p < 0.05, FDR corrected), including the left and 
right cuneus, left precuneus, left supramarginal gyrus and right inferior temporal gyrus. 

3.3 Coordinated Development of Excitatory and Inhibitory EC 

One major advantage of EC over FC is that it allows the characterization of excitatory 
and inhibitory connectivity separately. The developmental profiles of excitatory (posi-
tive) mean nodal EC and inhibitory (negative) mean nodal EC are shown in Fig. 3A, B, 
respectively. The positive nodal EC decreases slightly from neonatal to late infancy, 
then increases rapidly to late childhood followed by a slight reduction in adolescence, 
which parallels the development of the net nodal EC (Fig. 1D) except for the slight 
decrease from late childhood to adolescence. The inhibitory nodal EC follows a similar 
trajectory. It increases continuously (i.e., more negative) from neonatal to late child-
hood followed by a reduction from late childhood to adolescence. As the major devel-
opmental change of the excitatory nodal EC is increasing from neonatal to late child-
hood, the excitatory and inhibitory EC show coordinated developmental profiles. 
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Fig. 3. Developmental profiles of excitatory mean nodal EC (A) and inhibitory mean 
nodal EC (B). Error bars indicate standard errors. 
 

 
Fig. 4. Network-dependent evolution of nodal EC. Normalized network-averaged net 
nodal EC (A), excitatory nodal EC (B), and inhibitory nodal EC (C) among different 
age groups. VIS: visual network; SomMot: somatomotor network; SAL: salience net-
work; LIM: limbic network; FPC: frontoparietal control network; DMN: default mode 
network. Error bars indicate standard errors. 
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3.4 Network-dependent Evolution of Nodal EC 

The developmental profiles of the average nodal EC among six functional networks are 
shown in Fig. 4. For the net nodal EC (Fig. 4A), we observe that except for the visual 
network that shows small increase from neonatal to late infancy, all other networks 
slightly decrease from neonatal to late infancy and either stay at the same level or return 
to the original neonatal level in early childhood. From early childhood to adolescence, 
the frontoparietal control (PFC) network shows the fastest increase followed by the 
visual network and salience network. Interestingly, the somatomotor network increases 
from early childhood to late childhood but decreases towards adolescence. The limbic 
network is the only network that decreases considerably from early childhood to late 
childhood and adolescence. Decomposition of the mean nodal EC into excitatory (Fig. 
4B) and inhibitory (Fig. 4C) components demonstrates that the excitatory EC of the 
visual network increases continuously from neonatal to adolescence. Thus, the visual 
network develops first from neonatal to early childhood, while the PFC develops the 
strongest from early childhood to adolescence. Moreover, the inhibitory nodal EC of 
most of the networks (except for FPC and somatomotor) increases slightly from neo-
natal to early childhood followed by a more pronounced increase (i.e., more negative) 
from early childhood to late childhood before decreasing considerably towards adoles-
cence. Of note, the limbic network shows the largest inhibition increase in nodal EC 
from early childhood to late childhood. 

4 Discussion 

Utilizing a high quality rs-fMRI dataset from BCP and HCP-D, we delineated the de-
velopmental trajectory of effective connectome from infancy to adolescence for the first 
time. We showed that the nodal EC follows a nonlinear trajectory which decreases first 
from neonatal to late infancy and then increases robustly from early childhood to ado-
lescence. Such nonlinear development patterns may represent the complex neurobio-
logical processes that take place during infancy including myelination, synaptogenesis, 
and axonal and synaptic pruning [2]. Of note, the reconfiguration and reorganization 
due to sensory exposure could result in retraction of callosal fibers up to 70% in pri-
mates [23], which may explain the reduction in nodal EC from neonatal to late infancy. 
The strong increase in effective connectome from early childhood to adolescence re-
flects the strengthening of anatomical structures from childhood to adulthood [24], 
which is also consistent with increased functional connectivity during this period [8]. 
The enhanced effective connectivity may contribute to elevated functional integration 
and improved cognitive functions during the transition from early childhood to adoles-
cence. In addition, we revealed the visual network develops first during early years 
while the FPC network develops the strongest starting early childhood, consistent with 
early development of sensory systems and late development of association brain sys-
tems [2]. Lastly, we observed that the excitatory EC and inhibitory EC develop in par-
allel in a coordinated fashion, which may lead to relatively stable excitation-inhibition 
balance during development. Overall, our study represents the first attempt to chart ef-
fective connectome from infancy to adolescence, which reveals novel insights into the 
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nonlinear nature of early brain development. The normative EC reference charts could 
serve to benchmark individual brain development and aid in the early detection of de-
velopmental disorders. 
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