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Abstract. Phase recognition in surgical videos is crucial for enhancing
computer-aided surgical systems as it enables automated understand-
ing of sequential procedural stages. Existing methods often rely on fixed
temporal windows for video analysis to identify dynamic surgical phases.
Thus, they struggle to simultaneously capture short-, mid-, and long-
term information necessary to fully understand complex surgical pro-
cedures. To address these issues, we propose Multi-Scale Transformers
for Surgical Phase Recognition (MuST), a novel Transformer-based ap-
proach that combines a Multi-Term Frame encoder with a Temporal Con-
sistency Module to capture information across multiple temporal scales
of a surgical video. Our Multi-Term Frame Encoder computes interde-
pendencies across a hierarchy of temporal scales by sampling sequences at
increasing strides around the frame of interest. Furthermore, we employ
a long-term Transformer encoder over the frame embeddings to further
enhance long-term reasoning. MuST achieves higher performance than
previous state-of-the-art methods on three different public benchmarks.

Keywords: Surgical Workflow Analysis · Surgical Phase Recognition ·
Long-Term Transformers · Vision Transformers · Temporal Multi-Scale

1 Introduction

Surgical workflow analysis is critical for computer-assisted surgery, as it aims to
understand the operational sequence of stages in surgical procedures [19,16,22].
Henceforth, equipping computer-aided systems with the ability to recognize
these workflows would improve automated assistance to surgical teams, facil-
itate postoperative analysis, and contribute to medical personnel training [29].
An imperative step towards automatic surgical workflow analysis is identifying
the succession of distinct phases throughout a surgical procedure [6]. Despite
advancements in addressing this task, phase recognition remains challenging as
it demands adaptable models capable of understanding the inherent variabil-
ity in phase durations and the high semantic similarity between distinct phases
present in surgical data [16]. Thus, these models need to incorporate long-term
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Fig. 1. MuST employs a Multi-Term Frame Encoder to generate rich embeddings
containing short- and mid-term dependencies for a long-term sequence of F ′ frames.
The Temporal Consistency Module introduces long-term analysis by processing rela-
tionships among frame embeddings to enable coherence in the predictions.

temporal context and ensure precise temporal consistency to achieve a reliable
understanding of surgical progressions [18].

Pioneering works for surgical phase recognition used manually designed fea-
tures to train classical machine learning classifiers [22,21]. However, Deep Learn-
ing methods gradually replaced them due to their superior capacity to represent
temporal and spatial contexts. EndoNet [24] was the first approach that em-
ployed Convolutional Neural Networks (CNNs) to extract features that cap-
tured spatial dependencies but did not incorporate the temporal information
from surgical videos. To address this limitation, PhaseNet [25], EndoLSTM [26],
SV-RCNet [14], and OHFM [30] used long short-term memory (LSTM) networks
to model temporal dependencies. Nevertheless, LSTM-based methods have lim-
ited long-term processing capacities due to their sequential nature and vanishing
gradient issues. To mitigate this problem, TMRNet [15] proposed multi-scale
non-local operations, but they needed to aggregate global information collab-
oratively. On the contrary, TeCNO [4] used Temporal Convolutional Networks
(TCN) with dilated convolutions to achieve long-term temporal context, which
limited its comprehension of short-term and fine-grained information.

Transformers [28] have proved to be remarkably powerful for sequential data
and also for image and video analysis [2,9,31,8] due to their ability to model
long-term dependencies and extract rich features through self-attention mecha-
nisms. Multiple surgical workflow analysis models like OperA [5], SAHC [7], and
Trans-SVNet [11] incorporated Transformer layers to TCNs in order to efficiently
combine the spatial and temporal features. Nonetheless, their dependence on
TCN modeling leads to a loss of finer-grained information, and using temporal-
agnostic backbones limits frame embeddings to capture only spatial information.
In contrast, TAPIR [27] and TAPIS [1] proved the utility of a fully Transformer-
based model for multiple surgical workflow analysis tasks and improving frame
representation by extracting rich spatio-temporal embeddings. Still, these mod-
els process short-term fixed-size windows and employ a per-frame prediction
approach that limits its temporal consistency. Recently, SKiT [18] achieved long-
term reasoning by using critical pooling to record relevant past information, but
it also employs a backbone that only extracts spatial dependencies.
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Several methods have studied the potential of multi-scale analysis to improve
temporal comprehension in generic human activity recognition [10,23,12,20]. Ini-
tially, SlowFast [10] introduced the concept of sub-sampling video sequences at
different rates to consider multiple temporal coverages. More recently, TemPr
[23] extended this approach by using a set of Transformers on various sequences
of increasing temporal coverages, enabling information aggregation from diverse
scales. Still, these concepts need to be fully explored in surgical workflow anal-
ysis. Integrating them could be highly advantageous, as it introduces dynamic
window designs for phase recognition that adapt to phases of varying lengths.

This work presents a novel approach to augment flexibility over surgical phase
variability by processing multiple temporal scales. For this purpose, we intro-
duce Multi-Scale Transformers for Surgical Phase Recognition (MuST), a fully
Transformer-based model composed of two processing stages. The first stage
corresponds to a Multi-Term Frame Encoder (MTFE) that captures informa-
tion from short- and mid-term temporal scales into multi-term frame embed-
dings. Within this stage, we create a temporal pyramid comprising multiple
sequences sampled at progressively increasing rates [23]. Inspired by multi-scale
image processing Transformers [3], we introduce a Multi-Temporal Attention
Module that correlates information from each sequence and combines patterns
across short- and medium-term periods, offering a flexible understanding of the
information wrapping each frame. The second stage is a Temporal Consistency
Module (TCM) that employs a lightweight and long-term Transformer encoder
to process extensive sequences of multi-term frame embeddings. This approach
enables our TCM to encode long-term dependencies within the surgical proce-
dure and predict temporally coherent surgical phase segments. Hence, the MTFE
and the TCM complement each other to achieve holistic temporal modeling of
complex surgical procedures.

To sum up, our main contributions are: (1) We introduce a multi-sequence
pyramid and a Multi-Temporal Attention Module for surgical phase recognition,
allowing the combined analysis of temporal windows with a hierarchical temporal
coverage over a surgical video, and (2) we propose a temporal consistency module
that leverages Transformers’ attention over the extracted frame embeddings to
improve the consistency along wide-range temporal segments.

We demonstrate MuST’s superiority over previous state-of-the-art models by
extensively evaluating on three public benchmarks. To ensure reproducibility, all
our source code and pretrained models are available at https://github.com/
BCV-Uniandes/MuST.

2 Method

We present Multi-Scale Transformers for Surgical Phase Recognition (MuST),
a two-stage Transformer-based architecture designed to enhance the modeling
of short-, mid-, and long-term information within surgical phases. Our method
employs a frame encoder that leverages multi-scale surgical context across dif-
ferent temporal dimensions. The frame encoder considers diverse time spans

https://github.com/BCV-Uniandes/MuST
https://github.com/BCV-Uniandes/MuST
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Fig. 2. MuST’s Multi-Term Frame Encoder utilizes MViT to capture embeddings
of a temporal sequence sampled at multiple rates (xi) with the keyframe placed at
the middle position for offline setups and at the last position for online setups. Each
sequence embedding (li), along with their corresponding class token (clsi), goes through
the Multi-Temporal Attention Module with the rest of the sequence embeddings of the
pyramid as temporal context. A final rich multi-term embedding of the keyframe is
generated by concatenating class tokens from each scale and processing them through
a multi-layer perceptron (MLP).

around a specific frame of interest, which we call a keyframe. The keyframe
serves as the specific frame that we encode. We construct temporal windows
around this keyframe to provide the necessary temporal context for accurate
phase classification. Our encoder generates rich embeddings that capture short-
and mid-term dependencies. To further enhance long-term understanding, we
employ a Temporal Consistency Module (TCM) that establishes relationships
among frame embeddings within an extensive temporal window, ensuring coher-
ent phase recognition within an extensive temporal window.

As illustrated in Fig. 2, MuST begins by constructing a pyramid of sequences
around each keyframe, capturing a hierarchy of temporal scales with increasing
sample rates [23]. Our method leverages a Video Backbone [9] to obtain rich
feature representations of the temporal context around a surgical keyframe pro-
vided by each sampled sequence. Then, our Multi-Temporal Attention Module
captures interdependencies between the different temporal scales and retains the
class token from each sequence. Furthermore, we concatenate the class tokens
through a Multi-Layer Perceptron (MLP) to generate rich multi-term embed-
dings. Finally, our TCM self-attends the generated frame embeddings from the
MLP and enhances coherence in predictions across an extensive temporal win-
dow, as shown in Fig. 1.

Temporal Multi-Scale Pyramid. We sample sub-sequences from a surgical
video at increasing rates to construct a temporal multi-scale pyramid. In offline
setups, each sequence places the keyframe in the middle position, whereas in
online setups, it is placed at the last position. Thus, this pyramid offers finer-
grained temporal detail with lower temporal coverage at the first levels, while
the last levels provide broader but sparse temporal context. This hierarchical
structure enables simultaneous analysis at multiple temporal resolutions and
captures information efficiently across various time scales.
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Given a total number of N sampling scales, we define the set of sampled sub-
sequences as X = {xi}Ni where each sequence xi ∈ RT×H×W×3 has T RGB
frames of H×W pixels and the temporal sampling stride of a sequence xi in-
creases as i approaches N . For each input sub-sequence, we use a shared video
backbone M(•) to compute a sequence of spatio-temporal embeddings li ∈
RT ′×D with T’ embeddings of length D. We define the set of output embed-
dings from the video backbone as L = {li}Ni where li = M(xi).
Video Backbone. We adopt MViT [9] as our video backbone. MViT processes
a fixed temporal window throughout multiple stages containing several Trans-
former blocks. At the beginning of each stage, a Multi-Head Pooling Attention
(MHPA) mechanism reduces the space-time resolution while augmenting the fea-
ture dimension. Thus, MViT produces an implicit multi-scale feature pyramid
where the initial stages capture detailed spatial resolutions while the final stages
encode a shorter sequence of complex spatio-temporal embeddings. Additionally,
MViT concatenates a learnable class token to capture a single embedding of the
entire sequence. For further details, we refer the reader to the original MViT [9]
paper. MuST retains the class token and the patch embeddings from the video
backbone for each pyramid level.
Multi-Temporal Attention Module. We introduce a novel Multi-Temporal
Attention Module to compute relationships among the spatio-temporal repre-
sentations extracted from each pyramid scale [3], as detailed in Fig. 2B. This
module is composed of two units: a Multi-Temporal Cross-Attention (MTCA)
unit to explore sequence inter-dependencies, denoted as MTCA(•), and a resid-
ual Multi-Temporal Self-Attention (SA) unit to identify relationships among
all computed embeddings, symbolized by SA(•). The MTCA module computes
cross-attention between each embedding sequence with the concatenation of all
sequences. For the i -th set of embeddings generated from the i -th sub-sequence,
we compute MTCA’s attention as follows,

l′ = concat(L), Qi = Wi
Qli, Ki = Wi

K l′i, Vi = Wi
V l′i (1)

MTCA(li, l
′
i) = softmax

(
Qi ·Ki

T√
dki

)
Vi (2)

Where concat(L) represents the concatenation operation across the sequence axis
and WQ

i , WK
i , and WV

i represent the learnable weights of the queries (Q), keys
(K), and values (V) for the i -th embedding, respectively. We designate the set
of output embeddings from the MTCA by C = {ci}Ni where ci = MTCA(li, l

′
i)

and ci ∈ RT ′×D. Further on, for each ci we calculate self-attention in the SA
module as follows:

c′i = concat(li, C), Qi = WQ
i c′i, Ki = WK

i c′i, Vi = WK
i c′i (3)

SA(c′i) = softmax

(
Qi ·Ki

T√
dki

)
Vi (4)
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Where concat(li, C) represents the concatenation across the sequence dimension
of all the embeddings in C with the li sequence produced by the video backbone
as a residual connection, thus c′i ∈ R(N+1)T ′×D. Finally, we concatenate all class
tokens into a single embedding p′ ∈ RND which is linearly transformed by an
MLP into the final multi-term frame embedding denoted as p ∈ RND where
p = MLP (p′). We train our shared video backbone and our Multi-Temporal
Attention Module by adding a linear classifier that projects each p into a class
probability distribution corresponding to the phase class of the middle frame in
the multi-sequence pyramid.
Temporal Consistency Module (TCM). We adopt Transformers’ self-attention
to capture relationships between multiple frames and enhance their understand-
ing of long-term dependencies. Given a video V ∈ RF×H×W×3 with F frames, we
construct overlapping windows v = {pj}F

′

j of F ′ frames (F ′ < F ) where pj cor-
responds to the multi-term frame embedding generated for the j -th frame in the
window. Thus, the total number of windows in v will be equal to 1+ F−F ′

F ′−Overlap .
We perform self-attention as follows:

v′ = concat(v) + PE, Q = WQv′, K = WKv′, V = WV v′ (5)

TCM(v) = softmax
(
Q ·KT

√
dk

)
V (6)

Where concat(v) is the concatenation of all embeddings in v into a sequence of
F ′ embeddings, and PE corresponds to a cosine positional embedding. Finally,
we linearly project each output embedding into a phase class distribution. For
offline inference, we average all the probability distributions obtained for each
frame throughout all sampled overlapping windows.

3 Experiments and Results

3.1 Experimental Setup

Datasets. We evaluate the performance of MuST in three surgical datasets:
HeiChole [29], GraSP [1], an extended version of PSI-AVA [27], and MISAW
[13]. These datasets are standard benchmarks in surgical workflow analysis from
different domains. We adhere to each dataset’s public benchmarks and metrics to
ensure fair comparison with other models. Thus, we evaluate using the F1-score
in HeiChole in an online setup and mean Average Precision (mAP) in GraSP and
MISAW offline. Since HeiChole’s test data is not public, we used the training and
validation sets proposed by [29] for comparison with other methods. For GraSP,
we perform ablation studies using its cross-validation set and report final results
using its test set.

Implementation Details. We initialize the weights from an MViT-B model
pretrained on phase recognition tasks for 20 epochs. Using these pretrained
weights, we train the MuST Multi-Term Encoder for an additional five epochs,
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utilizing three NVIDIA Quadro RTX 8000 GPUs with a batch size of 18. For
the offline setup, we construct the Temporal Multi-Scale Pyramid using four
sequences of 16 frames each, with sampling rates of 1, 4, 8, and 12 seconds. We
use 24 frames with the same sampling rates for the online setup. Specifically for
HeiChole, we adapt the temporal window to include only past frames to ensure a
fair comparison with other online methods. We train the Temporal Consistency
Module (TCM) for 20 epochs on a single GPU with a batch size of 256. The
temporal window covers 10% of the mean video duration for offline datasets and
5% for online datasets, with a 90% overlap for all datasets. The training for all
modules in MuST utilizes cross-entropy loss, optimized using AdamW with a
cosine learning rate scheduler, a weight decay of 1×10−4, and an initial learning
rate of 1× 10−4. Our model comprises 68 million parameters.

3.2 Experimental Validation

We show the overall performance in Table 1 and our qualitative comparisons
in Fig. 3. We compare our model with open-source, state-of-the-art methods.
We train and optimize these methods on our selected benchmarks to ensure fair
and accurate comparisons. MuST outperforms previous state-of-the-art methods
across all datasets, achieving excellent results in both online and offline setups.
These results highlight the effectiveness of multi-scale temporal reasoning in
ensuring consistent predictions across various temporal intervals.

Table 1. Comparative Results of MuST in different benchmarks. The best
results are shown in bold. All methods were adapted to conduct offline or online infer-
ence according to the dataset.

a) Grasp b) MISAW c) HeiChole
Model Phases mAP Model Phases mAP Model F1-score
TAPIS 76.07 TAPIS 97.14 TAPIS 73.41
TeCNO 77.10 TeCNO 95.58 TeCNO 69.35

Trans-SVNet 76.54 Trans-SVNet 90.38 Trans-SVNet 71.85
MuST (ours) 79.14 MuST (ours) 98.08 MuST (ours) 77.25

Our method consistently overperforms TAPIS, which employs an MViT back-
bone with a fixed temporal window. Compared to TeCNO, MuST improves phase
recognition metrics in short- and medium-duration time intervals. We present
per-class performance and phase mean durations across all datasets in Table 1
of the Supplementary Material. These results prove the advantages of incorpo-
rating spatio-temporal reasoning of sequences facilitated by MuST’s backbone
instead of per-frame embeddings coming from a CNN classifier. Along with the
Multi-Temporal Attention Module and the TCM, MuST distinguishes phase
time intervals and durations more accurately.

Finally, compared to Trans-SVNet, which relies on short-term fixed-size win-
dows and per-frame prediction, MuST effectively captures rapid phase changes,
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Fig. 3. Qualitative results. Qualitative comparisons with state-of-the-art methods
on one representative video from each dataset.

particularly evident in the GraSP dataset (Fig. 3), where phases exhibit highly
variable time durations. This capability arises from the multi-term reasoning
from the MTFE. This encoder learns relationships within each sub-sequence in
the pyramid, producing rich multi-term frame embeddings that are subsequently
refined by the TCM for segment predictions that relate a wider temporal con-
text within the sequence. Furthermore, we conducted an additional validation of
MuST on the Cholec80 dataset [24] and obtained an F1-score of 85.24%, preci-
sion of 84.0%, and recall of 86.5%, achieving a highly competitive performance,
comparable to current state-of-the-art methods on this benchmark [18,17].

3.3 Ablation Experiments

We conduct ablations on the cross-validation set of the GraSP benchmark, as
detailed in Table 2 and displayed in Fig. 3 of the Supplementary Material. Our
experiments demonstrate that using multiple sequences sampled at the same
rate as input leads to a performance increase, likely due to higher redundancy
that allows a wider understanding of the patterns present in the data. Similarly,
we observe a significant performance boost when incorporating the Temporal
Multi-Scale Pyramid, which constructs windows at varying sample rates. This
approach aggregates information from multiple scales, resulting in richer contex-
tual information. Adding cross-attention and self-attention mechanisms further
improves the model’s performance as they establish cross-scale reasoning that
enables interactions between sequences in the pyramid. This is evident in the
cross-attention maps in Fig. 2 of the Supplementary Material. Lastly, the TCM
significantly enhances the model’s prediction coherence by incorporating long-
term dependencies between frame embeddings through its transformer encoder
architecture. This improvement is illustrated in Fig. 3 of the Supplementary
Material.

4 Conclusions

In this work, we introduce a novel method for surgical phase recognition that
effectively addresses the challenges associated with varying phase durations in
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Table 2. Ablation experiments results for MuST in the GraSP benchmark.
The Multi-Sequence column indicates if the model processes multiple input windows,
and the Temporal Multi-Scale Pyramid column denotes the use of multiple temporal
scales. The Multi-Temporal Attention Module column indicates the use of attention
mechanisms across multiple temporal scales. TCM represents the inclusion of the Tem-
poral Consistency Module. A checkmark (✓) indicates the presence of an attribute,
while a blank space denotes its absence. The best result is highlighted in bold.

Multi-Sequence Temporal Multi-Scale
Pyramid

Multi-Temporal
Attention Module TCM mAP

72.57 ± 0.09
✓ 73.38 ± 2.30
✓ ✓ 75.87 ± 2.19
✓ ✓ ✓ 76.13 ± 1.74
✓ ✓ ✓ ✓ 77.34 ± 1.02

surgical data. By leveraging a temporal pyramid and a cross-attention module,
we enrich the temporal context and facilitate multi-scale learning, capturing
short- and mid-term dependencies. Additionally, we present a Temporal Consis-
tency Module to enhance long-term reasoning and strengthen the model’s overall
performance. We demonstrate that MuST outperforms previous state-of-the-art
methods across different surgical datasets and establishes a flexible framework
for future research in complex temporal modeling in surgical settings.
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