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Abstract. Neurodevelopment is exceptionally dynamic and critical during in-
fancy, as many neurodevelopmental disorders emerge from abnormal brain de-
velopment during this stage. Obtaining a full trajectory of neurodevelopment 
from existing incomplete longitudinal data can enrich our limited understanding 
of normal early brain development and help identify neurodevelopmental disor-
ders. Although many regression models and deep learning methods have been 
proposed for longitudinal prediction based on incomplete datasets, they have two 
major drawbacks. First, regression models suffered from the strict requirements 
of input and output time points, which is less useful in practical scenarios. Sec-
ond, although existing deep learning methods could predict cortical development 
at multiple ages, they predicted missing data independently with each available 
scan, yielding inconsistent predictions for a target time point given multiple in-
puts, which ignores longitudinal dependencies and introduces ambiguity in prac-
tical applications. To this end, we emphasize temporal consistency and develop 
a novel, flexible framework named longitudinally consistent triplet disentangle-
ment autoencoder to predict an individualized longitudinal cortical developmen-
tal trajectory based on each available input by encouraging the similarity among 
trajectories with a dynamic time-warping loss. Specifically, to achieve individu-
alized prediction, we employ a surfaced-based autoencoder, which decomposes 
the encoded latent features into identity-related and age-related features with an 
age estimation task and identity similarity loss as supervisions. These identity-
related features are further combined with age conditions in the latent space to 
generate longitudinal developmental trajectories with the decoder. Experiments 
on predicting longitudinal infant cortical property maps validate the superior lon-
gitudinal consistency and exactness of our results compared to baselines’. 

Keywords: Cortical Prediction, Individualized Development, Longitudinal 
Consistency. 

1 Introduction 

The human brain undergoes exceptionally dynamic and critical development during 
infancy. Delineating a complete individualized developmental trajectory is essential to 
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understand individual uniqueness and identify abnormal development. However, it’s 
impossible to obtain complete longitudinal scans in clinical scenarios due to the absence 
of patients at certain scan ages and limitations in imaging protocol designs. Therefore, 
predicting individualized developmental changes based on incomplete longitudinal 
scans is critical for comprehensively investigating individualized development and un-
derstanding the divergence between prediction and ground truth, which is essential for 
designing prompt individualized interventions. 

Recently, several methods made success in predicting missing data during early 
brain development, e.g., the regression models [1,2,15] and learning-based models [18]. 
These methods either capitalized on the inherent structure and inter-relation between 
existing and missing data or leveraged the geometric and dynamic features of the cor-
tical surface to model/predict the dynamic development. However, these computational 
methods imposed strict data requirements for training the models, which require scans 
at predefined time points or complete longitudinal scans. Consequently, many longitu-
dinal data fail to meet these requirements, resulting in the discard of various irregularly 
distributed but valuable data. Alternatively, deep learning-based models have emerged 
as powerful tools in many scenarios, such as age prediction [13], cognitive prediction 
[4,5], development prediction [7,8,10,16,24], disease diagnosis [3,17], etc., leveraging 
their impressive interpretability and flexibility to capture profound latent features. For 
example, [7,8] have sought to investigate the developing cortex in cortical maturation, 
which used the generative models directly conditioned on the post-menstrual age and 
gestational age. [13, 23] used the feature disentanglement to predict development with 
incomplete longitudinal data. Although these deep learning-based methods demonstrate 
promising results and are devoid of stringent data requirements, they encounter an in-
herent drawback of predicting based on each input time point independently, ignoring 
their intrinsic relationship. These approaches lead to inconsistent and implausible re-
sults for the same time point when using input from different time points. 

To address these issues, we propose a novel, flexible deep learning method to predict 
individualized full longitudinal cortical property maps within 24 months of age. Our 
approach builds on a surface-based autoencoder [25] and uses an attention-based strat-
egy [22] to conduct the disentanglement of identity-related and age-related compo-
nents. To fully leverage irregularly distributed and limited training samples in each age 
group, we adopted the triplet units followed by triplet autoencoder [12, 13, 23]. To 
reduce the ambiguity introduced by independent predictions and highlight the longitu-
dinal consistency, we leveraged the dynamic warping loss [6] to constrain the predicted 
trajectory based on different input time points. To learn a more controllable and mean-
ingful generative model, we enforced the cycle consistency between forward and back-
ward mappings, inspired by CycleGAN [27]. The main contributions of this paper can 
be summarized as follows: 1) we formulated missing data prediction as a one-to-se-
quence prediction and proposed a novel and flexible framework capable of taking the 
cortical property map at any time point as input to generate a complete developmental 
trajectory. 2) We designed a novel feature disentanglement and an identity-preserved 
fusion block to take advantage of the irregularly distributed longitudinal dataset and 
effectively preserve identity-related patterns along the individualized cortical develop-
ment. 3) We enforced temporal consistency by leveraging the dynamic time-warping 
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loss to guarantee consistent and meaningful results across different inputs. To the best 
of our knowledge, this is the first flexible individualized longitudinal prediction frame-
work that overcomes limitations such as strict data requirements, the inability to pre-
serve temporal consistency, and the lack of interpretability. Extensive experimental re-
sults validate the superiority of our proposed model over other state-of-the-art methods. 

 
Fig. 1. The framework of the proposed longitudinally consistent triplet disentanglement autoen-
coder. Cortical thickness, sulcal depth, surface area, and myelin content were used as the input 
cortical property maps as well as the prediction target. For clarity, only the cortical thickness map 
was shown in the figure. 

2 Method 

2.1 Network Architecture 

We developed our method based on [24], but in an autoencoder manner to leverage its 
simplicity and lightweight nature. We used four cortical property maps, i.e., cortical 
thickness, sulcal depth, surface area, and myelin content, as our input cortical property 
maps as well as prediction target. The framework constitutes four primary parts, i.e., an 
encoder, a feature disentanglement module, an identity conditional block, and a decoder 
as illustrated in Fig. 1.  

The encoder (E) first extracts the latent features 𝒛: 𝒛 = 𝐸(𝑿), incorporating the fun-
damental operations of spherical CNN proposed in Spherical U-Net [25] that extends 
convolution, pooling, and upsampling operations to the spherical surface. Concretely, 
the encoder comprises 5 repeated spherical 1-ring Convolution (Conv)+Batch Normal-
ization (BN)+LeakyReLU layers with 4 spherical max pooling layers interspersed. 𝐸 
consists of five resolution steps (40,962, 10,242, 2,562, 642, and 162 vertices) and the 
feature channels at each resolution are set to 16, 32, 64, 128, and 256, respectively. 

To detect and separate entangled identity information and age information from 𝒛, 
we introduce a feature disentanglement module (F) for its reliability and simplicity [14, 
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24]. The feature disentanglement module comprises channel and spatial attentions in 
parallel to capture age-related information, 𝑨 = 𝒛⊗ 𝜎(𝒛), where ⊗ denotes element-
wise multiplication and σ denotes attention operation, which can be supervised by an 
age prediction task. While the residual part, 𝑰 = 𝒛⊗ (1 − 𝜎(𝒛)),  regarded as the iden-
tity-related information, will be supervised by an intensive triplet loss [12]. Thus, the 
identity and age information are well disentangled from latent features: (𝑨, 𝑰) = 𝐹(𝒛). 
Herein, the channel attention in 𝐹 contains two repeated 1-ringConv+BN+LeakyReLU 
following a sigmoid layer at the end, while the spatial attention contains one 1-
ringConv+BN+LeakyReLU with a sigmoid layer at the end. The feature channel in F 
is 256. 

To maintain identity invariance and achieve the identity-level evolving patterns, the 
identity conditional block (C) takes identity-related information and uses a weight-shar-
ing strategy to smoothly obtain individualized developmental features. By specifying 
the target age 𝑡, we can filter out the individualized developmental features at 𝑡. Then 
the decoder (D) gradually upsamples the individualized developmental features and re-
constructs the target age with the original size, which can be formulated as:	𝒙3! =
𝐷(𝐶(𝑰), 𝑡).		Specifically, the decoder consists of 5 repeated spherical 1-ring transposed 
Convolutional+BN+LeakyReLU layers to deal with the concatenation and one spheri-
cal 1-ring Convolution (Conv)+Batch Normalization (BN)+LeakyReLU layer with a 
sigmoid layer at the end, where the resolutions are 162, 642, 2,562, 10,242, 40,962, and 
40,962 vertices, and the corresponding feature channels are set to 256, 128, 64, 32, 16, 
and 4, respectively. 

2.2 Loss Design 

The objective of optimizing the whole model includes four types of losses: 1) a disen-
tangling loss for decomposing the identity- (I) and age-related features (A) from latent 
features (𝒛); 2) A longitudinal consistency loss for guaranteeing the temporal con-
sistency between the same predicted series from different inputs; 3) A reconstruction 
loss to directly constrain the vertex-wise similarity between the generated surface maps 
and the corresponding ground truth; 4) A cycle-consistent loss to prevent the decoder 
from producing irrelevant surface maps. 

Disentangling Loss. To guarantee accurate and meaningful feature disentanglement, 
the disentangling loss includes two goals: 1) obtaining unique identity-related features; 
and 2) obtaining evolving age-related features. As illustrated in Fig. 1, the triplet units 
(𝑿"

!! , 𝑿"
!" , 𝑿#

!#), the first two surfaces are from the same subject 𝑖 at different ages, i.e., 
𝑡$ and 𝑡%, while the last one is from a different subject 𝑗 at any age 𝑡&. We assume the 
identity-related features from the same subjects should be similar, while those from 
different subjects should be disparate. To construct abundant training units from limited 
scans and reinforce the relationship between triplet units, intensive triplet loss was em-
ployed to ensure the effectiveness of identity-related feature extraction: 
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where Corr denotes the Pearson’s correlation coefficient and 𝑁 denotes the total num-
ber of training samples. 

To further ensure the age-related features contain developing information, the cross-
entropy loss was applied to supervise the disentanglement of age-related features:  

 ℒ+,- = −∑ ∑ 𝑦"! ∙ log	(𝑤(𝑨"!))!∈'$
)
"/0 , (2) 

where w refers to the age classifier using age-related feature 𝑨"!, 𝑇" refers to the collec-
tion of time points with available scans of subject 𝑖, and 	𝑦"! refers to ground truth age 
one-hot label. The cross-entropy loss thus encourages A to capture age information 
same as the correct age label. w consists of two convolutional layers with 
BN+LeakyReLU in between. 

Longitudinal Consistency Loss. To reinforce the connection and coherence between 
longitudinal scans and decrease the ambiguity, a dynamic time warping loss [6,19] was 
applied to ensure the predicted trajectories to be similar and match with each other. The 
trajectory 𝓢" consists of a set of predicted cortical property maps at various time points, 
denotes as 𝓢" = {𝑿M"

!% , … , 𝑿M"
!&}. Thus, the longitudinal consistency loss was calculated 

as: 

 ℒ1'2 = ∑ soft)
"/0 -DTW3(𝓢"

!! ,			𝓢"
!"), (3) 

where soft-DTW3 is the dynamic warping distance calculated using [20], 𝛾 equals to 
0.1, 𝓢"

!!and 𝓢"
!" are the predicted trajectories based on 𝑡$ and 𝑡%, respectively. 

Reconstruction Loss. Incorporating the longitudinal consistency loss compels two pre-
dicted trajectories to exhibit similarity; however, it is critical to avoid a scenario where 
these trajectories deviate significantly from the corresponding ground truths. Conse-
quently, for direct prediction of cortical property map at 𝑡4  from 𝑡0 : @𝑨"

!% , 𝑰"
!%A =

𝐹 =𝐸@𝒙"
!%A> , 𝒙3"

!' = 𝐷@𝐶(𝑰"
!%), 𝑡4A, where 𝑡0 and 𝑡4 can be any age in 24 months, then 

we have incorporated a reconstruction loss into our framework, serving the purpose of 
ensuring the meaningful and reliable generation of surface maps: 

 ℒ5-6 = ∑ W𝑿M"
!' −𝑿"

!'W
4

4)
"/0 . (4) 

Cycle-Consistent Loss. To achieve a generative model that is simultaneously more 
controllable and meaningful, we incorporated additional constraints applied to the 
backward mapping process during the training of the decoder. As shown in Fig. 1, after 
generating the trajectories from each input, we randomly selected one generated map 
at 𝑡4  and backward mapped it to the input at 𝑡0 : @𝑨"

!% , 𝑰"
!%A = 𝐹 =𝐸@𝑿"
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!'), 𝑡0A , enforcing the cycle-
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consistent loss to guarantee the meaningfulness between inputs maps and cycle gener-
ated maps: 

 ℒ7869- = ∑ W𝐷@𝐹(𝐸@𝑿M "
!'A, 𝑡0A − 𝑿"

!%W)
"/0 0

. (5) 

3 Experiments and Results 

3.1 Dataset 

All experiments were evaluated using neuroimaging data from the public Baby Con-
nectome Project (BCP) dataset [11]. Cortical property maps were derived from T1- and 
T2-weighted MRI images, processed and registered using an infant-dedicated pipeline 
[21]. We employed left hemispheres with cortical thickness, sulcal depth, surface area, 
and myelin content, which were initially mapped onto the sphere, nonlinearly aligned, 
and further resampled with a regular spherical mesh with 40,962 vertices [9]. We used 
437 longitudinal scans of 209 typically developing infants within 24 months of age. All 
subjects were stratified and split into training and testing set with a portion of 7:3, and 
a 5-fold cross-validation in training set was used for tuning the parameters.  

3.2 Experimental Settings 

The network was implemented based on the public Spherical U-Net code [25]. We used 
four cortical property maps, including cortical thickness, sulcal depth, surface area, and 
myelin content, as our input channels. Each cortical property map was normalized be-
tween 0 and 1 across the dataset. The network was trained with an Adam optimizer with 
a fixed learning rate 5e-4 in an end-to-end manner for 100 epochs. The weights of dif-
ferent loss terms were empirically set as 0.01, 1.0, 10.0, 1e-5, 1.0 for ℒ+,-, ℒ'(", ℒ5-6, 
ℒ1'2, and ℒ7869-, respectively. 

We compare the proposed model with the following models: (1) the conditional 
Spherical U-Net based on vanilla Spherical U-Net [26] concatenates with one-hot en-
coding, specifying the target age, along the channel dimension in the upsampling blocks 
(CSUNet); (2) The lightweight DITSAA shares the same framework in [24] (DITSAA). 
These two models share the same feature channel setting as our model at each corre-
sponding resolution for a fair comparison. 

3.3 Results 

Validation on Preserving Longitudinal Consistency. To evaluate if the longitudinal 
consistency is successfully preserved, we first illustrated the individual-level trajecto-
ries predicted by different inputs in Fig. 2. As shown, CSUNet exhibited very similar 
trajectories across different inputs. However, it always predicted the same value at any 
age, indicating a tendency towards averaged results and overlooking individualized pat-
terns. DITSAA preserved more individualized patterns, but significant gaps were ob-
served between results based on different inputs. It lacked consideration for temporal 
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consistency and introduced ambiguity in clinical scenarios. In contrast, various devel-
opmental trajectories forecasted by different inputs using our method demonstrated 
strong consistency among themselves and closely aligned with the ground truth. 

Moreover, we also calculated the average distance in terms of DTW using Eq. (3), 
between all trajectories in Table 1. Our model outperformed the other competing meth-
ods by achieving the lowest average trajectory distance in predicting four cortical prop-
erty maps. The quantitative results demonstrated the effectiveness of longitudinal con-
sistency between predicted trajectories from different inputs. 

 
Fig. 2. Comparison of the predicted individual trajectories from different inputs with different 
methods. The x-axis represents ages in days, and the y-axis represents average cortical thickness 
(mm). The red stars denote ground truths at corresponding ages, while the black diamonds denote 
predictions at corresponding ages. Each color of the dashed line represents the predicted trajec-
tory based on the source input at the red star. 

Validation on Individualized Prediction. Ensuring longitudinal consistency among 
generated cortical property maps is of paramount importance; nevertheless, our primary 
objective is to acquire cortical property maps that are both meaningful and dependable. 
Consequently, an investigation into the predictive performance of our models was also 
undertaken. We computed the mean absolute error (MAE) and Pearson’s correlation 
coefficient (PCC) between the predicted and expected cortical property maps. The av-
erage MAE and PCC of four cortical property maps are shown in Table 2. Our model 
showed superior quantitative results to other competing models, with lower MAE and 
higher PCC in cortical thickness, surface area, and myelin content. Besides, we also 
visualized average absolute error maps obtained by different methods, as illustrated in 
Fig. 3. The average absolute error maps were consistent with quantitative results. 
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Overall, based on the information depicted in Table 1 and Table 2, we can conclude 
that our model excels not only in maintaining longitudinal consistency but also in 
achieving reliable individualized predictions. 

Table 1. Performance comparison of different methods in terms of DTW distance (magnitude:	
10!) to evaluate the longitudinal consistency. Mean and standard deviation values (Mean ± Std) 
of the testing results based on 5-fold cross-validation are reported.  

 Cortical  
Thickness 

Sulcal  
Depth 

Surface  
Area 

Myelin 
Content 

CSUNet 6.279±0.551 163.9±14.28 0.897±0.060 3.921±0.381 
DITSAA 8.647±1.203 190.8±67.06 1.055±0.177 5.923±1.353 
Proposed 6.071±0.300 171.5±7.149 0.845±0.041 3.584±0.209 

 

 
Fig. 3. Average absolute error maps of four cortical property maps by different methods. 

Table 2. Prediction performance comparison between different methods. Mean and standard de-
viation values (Mean ± Std) of the testing results based on 5-fold cross validation are reported. 

 Cortical  
Thickness (mm) 

Sulcal  
Depth (mm) 

Surface  
Area (mm2) Myelin Content 

Methods MAE PCC MAE PCC MAE PCC MAE PCC 

CSUNet 0.247± 
0.007 

0.830± 
0.006 

0.964± 
0.080 

0.977± 
0.003 

0.085± 
0.004 

0.921± 
0.003 

0.163± 
0.002 

0.655± 
0.026 

DITSAA 0.238± 
0.014 

0.835± 
0.008 

1.091± 
0.036 

0.975± 
0.002 

0.091± 
0.004 

0.909± 
0.015 

0.207± 
0.003 

0.642± 
0.013 

Proposed 0.209± 
0.005 

0.865± 
0.008 

0.972± 
0.073 

0.977± 
0.001 

0.077± 
0.001 

0.925± 
0.001 

0.158± 
0.002 

0.671± 
0.020 

4 Conclusion 

In this paper, to address the practical yet emphasized problem in individualized longi-
tudinal developmental prediction, we proposed a novel, flexible deep learning method 
to predict individualized full longitudinal cortical property maps within 24 months of 
age. We leveraged the interpretability of the disentangling strategy, the efficacy of lon-
gitudinal consistency, and the enhanced meaningfulness and reliability afforded by cy-
cle-consistency. This allows us to successfully address the intricate challenges of 
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individualized prediction using incomplete, irregularly distributed longitudinal da-
tasets, which is cumbersome and remains unresolved for existing methods. Both visual 
and quantitative results substantiate the efficacy of our model, demonstrating its poten-
tial for precise individual-level development prediction and providing inspiration for 
personalized interventions. 
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