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Abstract. Prenatal drug exposure, which occurs during a time of extraordinary 
and critical brain development, is typically associated with cognitive, behavioral, 
and physiological deficits during infancy, childhood, and adolescence. Early 
identifying infants with prenatal drug exposures and associated biomarkers using 
neuroimages can help inform earlier, more effective, and personalized interven-
tions to greatly improve later cognitive outcomes. To this end, we propose a novel 
deep learning model called disentangled hybrid volume-surface transformer for 
identifying individual infants with prenatal drug exposures. Specifically, we de-
sign two distinct branches, a volumetric network for learning non-cortical fea-
tures in 3D image space, and a surface network for learning features on the highly 
convoluted cortical surface manifold. To better capture long-range dependency 
and generate highly discriminative representations, image and surface transform-
ers are respectively employed for the volume and surface branches. Then, a dis-
entanglement strategy is further proposed to separate the representations from 
two branches into complementary variables and common variables, thus remov-
ing redundant information and boosting expressive capability. After that, the dis-
entangled representations are concatenated to a classifier to determine if there is 
an existence of prenatal drug exposures. We have validated our method on 210 
infant MRI scans and demonstrated its superior performance, compared to ab-
lated models and state-of-the-art methods. 
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1 Introduction 

Prenatal drug exposure is a significant public concern and occurs during a time of ex-
tremely dynamic and critical brain development. It can lead to long-term cognitive and 
behavioral disadvantages that may persist throughout an individual’s life and poten-
tially into the next generation, underscoring the importance of early prognostication of 
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infants who are at risk for poor developmental outcomes [1]. Noninvasive MR imaging 
holds great potential in early identifying infants with prenatal drug exposure and re-
vealing brain structural abnormalities and biomarkers associated with prenatal drug ex-
posure. This will help inform earlier, more effective, and personalized interventions to 
greatly improve later cognitive outcomes in this highly vulnerable population.  

However, this is very challenging because the intrinsic patterns for identifying an 
individual with prenatal drug exposure from the normal ones are overwhelmed by the 
rapid and complex brain development. Conventional methods [2,3] designed for neu-
roimage-based brain disorder diagnosis for adults and older children typically learn im-
age-based features and only suit the scenario with subtle longitudinal brain changes and 
thus typically fail to work on dynamic infant brains. To tackle this issue, previous stud-
ies [4-6] take advantages of cortical surface-based features [7] instead of image-based 
features to capture the dynamic and complex neurobiological changes of the cerebral 
cortex during infancy, e.g., for infant cognition prediction [4]. As prenatal drug expo-
sure can affect both cortical and deep noncortical regions, a flexible framework that can 
leverage cortical surfaces to capture complex, subtle cortical abnormal developmental 
patterns and MRI volumes to identify deficits in noncortical regions is critically desired.  

Therefore, in this paper, we propose a novel deep learning method called disentan-
gled hybrid volume-surface transformer (DHT) and apply it to identify infants with 
prenatal drug exposure, by taking advantages of both cortical surface-based represen-
tation and volumetric image-based representation. To this end, we transform them into 
an embedding space, where the regularity and variability of infant brain representations 
of surfaces and volumes can be effectively measured. Specifically, the Vision Trans-
former [8] and Spherical Surface Transformer [9] are chosen as the basic models to 
boost the discrimination capabilities for the volumed-based data and surface-based 
data, respectively, by leveraging their superior capabilities in modeling the long-range 
dependency. The motivation is that the Vision Transformer is well suitable for learning 
image-related features, especially for non-cortical regions, while the Spherical Surface 
Transformer is ideally capable of learning complex features on the cortical surface man-
ifold with an intrinsic spherical topology. Then, we minimize the redundancy between 
surface-based and volume-based information and extract their complementary infor-
mation to boost identification accuracy by separating their shared information from 
their specific information. To achieve this, we disentangle the latent variables of two 
encoders into representation-shared codes and representation-specific codes and en-
force the representation-shared codes obtained from different representations to be as 
similar as possible, while the representation-specific codes to be different from each 
other as much as possible. This approach thus helps to not only offer a general, unified, 
and comparable embedding space by unifying hybrid representations in a single em-
bedding space, but also effectively extract discriminative information for classification. 
To validate its effectiveness, we evaluated our method on 210 infant MRI scans to iden-
tify infants with prenatal opioid exposure and demonstrated its superior performance, 
compared to ablated models and state-of-the-art methods. 
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2 Method 

2.1 Overview 

As the schematic diagram shown in Fig. 1, our DHT works on the T1w and T2w MR 
images and cortical surfaces of both hemispheres (each with 40,962 vertices). The ar-
chitecture has two main parts, including a hybrid Transformer-based encoding branch 
to produce effective feature representation for volume data and surface data in a unified 
embedding space, and a disentanglement block for semantically separating the redun-
dant volume-surface shared information and the representative volume-specific and 
surface-specific information, finally boosting the identification accuracy. 

 

 

Fig. 1. The schematic diagram of our DHT that learns to embed the hybrid volume-surface data 
into a unified embedded space in an end-to-end architecture and further leverages the comple-
mentary information to boost the discriminative representation extraction. 

Our data can be formulated as (𝒔𝒔𝑙𝑙 , 𝒔𝒔𝑟𝑟 , 𝒊𝒊1, 𝒊𝒊2,𝑦𝑦), where 𝒔𝒔𝑙𝑙 and 𝒔𝒔𝑟𝑟 are the cortical sur-
face feature maps for left hemisphere and right hemisphere, respectively, while 𝒊𝒊1 and 
𝒊𝒊2 are T1w image and T2w image, respectively; 𝑦𝑦 is the category of the existence of 
prenatal drug exposure.  



4 

2.2 Hybrid Volume-Surface Transformer 

For each component in the input, we employ a neural network as its respective encoder 
𝑬𝑬𝒙𝒙, where 𝒙𝒙 ∈ {𝒔𝒔𝑙𝑙 , 𝒔𝒔𝑟𝑟 , 𝒊𝒊1, 𝒊𝒊2}. The encoding branches 𝑬𝑬𝒔𝒔𝑙𝑙 and 𝑬𝑬𝒔𝒔𝑟𝑟 for cortical surfaces 
are five spherical transformer blocks as illustrated in Fig. 1(b). Each spherical trans-
former block adopts a spherical transformer layer [9], which includes a 2-ring hexago-
nal multi-head self-attention layer, followed by layer normalization [10] and ReLU ac-
tivation to extract vertex-wise representation, which are then downsampled by another 
spherical transformer layer and a hexagonal mean pooling layer [11,12] (except the last 
spherical transformer block) to serve as the input of the subsequent layer. On the other 
side, we design the encoding branches for 𝑬𝑬𝒊𝒊1 and 𝑬𝑬𝒊𝒊2 similarly as shown in Fig. 1(c), 
each of which includes eight vision transformer blocks. Each block consists of a multi-
head self-attention layer and a feed forward layer followed by the layer normalization 
and ReLU. 

Based on the outputs from these four encoders, we propose a learnable spatial atten-
tion mechanism for localization of discriminative brain regions. Specifically, taken the 
surface branches as an example, let 𝒇𝒇𝒔𝒔𝑙𝑙 = 𝑬𝑬𝒔𝒔𝑙𝑙(𝒔𝒔𝑙𝑙) and 𝒇𝒇𝒔𝒔𝑟𝑟 = 𝑬𝑬𝒔𝒔𝑟𝑟(𝒔𝒔𝑟𝑟) ∈ ℝ162×𝐶𝐶 be the 
vertex-wise representations (produced by the last spherical transformer block) for the 
left and right hemispheres, respectively. We first concatenate them as a matrix with the 
shape of 324 × 𝐶𝐶, where 𝐶𝐶 is the dimension of the unified embedding space we cre-
ated. Then, a self-attention operation [13] 𝑶𝑶𝑠𝑠 is applied to capture cross-hemisphere 
long-range dependencies, which refines the vertex-wise representations from both hem-
ispheric surfaces, resulting in a unified feature matrix 𝑶𝑶𝑠𝑠(𝒇𝒇𝒔𝒔𝑙𝑙 ,𝒇𝒇𝒔𝒔𝑟𝑟)  ∈ ℝ324×𝐶𝐶 . As 
shown in Fig. 1(a), 𝑶𝑶𝑠𝑠(𝒇𝒇𝒔𝒔𝑙𝑙 ,𝒇𝒇𝒔𝒔𝑟𝑟) is further input into a global average pool (𝐺𝐺𝐺𝐺𝐺𝐺) layer 
to be a holistic feature vector 𝒉𝒉𝑠𝑠 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑶𝑶𝑠𝑠(𝒇𝒇𝒔𝒔𝑙𝑙 ,𝒇𝒇𝒔𝒔𝑟𝑟)) ∈ ℝ𝐶𝐶  representing the latent 
variable of the whole cerebral cortex. Similarly, we can obtain the latent variable for 
the volume-based data as 𝒉𝒉𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑶𝑶𝑖𝑖(𝒇𝒇𝒊𝒊1 ,𝒇𝒇𝒊𝒊2)) . Notably, by using 𝒉𝒉𝑠𝑠  and 𝒉𝒉𝑖𝑖  to 
identify infants with prenatal drug exposure, 𝑶𝑶𝑠𝑠 and 𝑶𝑶𝑖𝑖 highlight discriminative cortex 
regions on the surface and deep brain regions in the volume, respectively. 

2.3 Latent Variable Disentanglement 

To better learn the combined information from surfaces and volumes, shared and com-
plementary information should be separated. Here, 𝒉𝒉𝑚𝑚, where 𝑚𝑚 ∈ {𝑠𝑠, 𝑖𝑖}, is disentan-
gled into two parts: 𝒉𝒉𝑚𝑚

𝑆𝑆𝑆𝑆𝑆𝑆 and 𝒉𝒉𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚 ∈ ℝ𝐶𝐶/2. 𝒉𝒉𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚 is the common code representing the 
shared information amongst surfaces and volumes, while 𝒉𝒉𝑚𝑚

𝑆𝑆𝑆𝑆𝑆𝑆 is the specific code rep-
resenting the complementary information that differentiates one from the other. The 
basic requirements of the disentanglement are: 1) the concatenation of 𝒉𝒉𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚 and 𝒉𝒉𝑚𝑚

𝑆𝑆𝑆𝑆𝑆𝑆 
equals 𝒉𝒉𝑚𝑚; 2) 𝒉𝒉𝑖𝑖𝐶𝐶𝐶𝐶𝑚𝑚 and 𝒉𝒉𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚 should be as similar as possible; 3) 𝒉𝒉𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆 should differ 
from 𝒉𝒉𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆 as much as possible. Therefore, ℒ1 is defined as: 
ℒ1 = ℒ𝐶𝐶𝐶𝐶𝑚𝑚 ℒ𝑆𝑆𝑆𝑆𝑆𝑆⁄ , (1) 

ℒ𝐶𝐶𝐶𝐶𝑚𝑚 = ||𝒉𝒉𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚 − 𝒉𝒉𝑖𝑖𝐶𝐶𝐶𝐶𝑚𝑚||2, (2) 
ℒ𝑆𝑆𝑆𝑆𝑆𝑆 = ||𝒉𝒉𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝒉𝒉𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆||2. (3) 
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Since each latent variable has been disentangled into the common code 𝒉𝒉𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚 and 
the specific code 𝒉𝒉𝑚𝑚

𝑆𝑆𝑆𝑆𝑆𝑆 , the combined information is formed as 𝒉𝒉𝑠𝑠,𝑖𝑖 =
(𝒉𝒉𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆 ,𝒉𝒉𝑠𝑠,𝑖𝑖
𝐶𝐶𝐶𝐶𝑚𝑚,𝒉𝒉𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆), where 𝒉𝒉𝑠𝑠,𝑖𝑖
𝐶𝐶𝐶𝐶𝑚𝑚= (𝒉𝒉𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚+𝒉𝒉𝑖𝑖𝐶𝐶𝐶𝐶𝑚𝑚) /2. A multi-layer perceptron neural 

network (𝑀𝑀𝑀𝑀𝐺𝐺) is then designed as a classifier to predict the category of each subject 
from 𝒉𝒉𝑠𝑠,𝑖𝑖. Finally, the objective function to end-to-end optimize DHT is written as: 

ℒ = 𝜆𝜆1ℒ1 + 𝜆𝜆2ℒ2, (4) 
ℒ2 = − 𝑙𝑙𝑙𝑙𝑙𝑙�𝐺𝐺(𝑦𝑦|𝒔𝒔𝑙𝑙 , 𝒔𝒔𝑟𝑟 , 𝒊𝒊1, 𝒊𝒊2;𝜃𝜃)� , (5) 

where 𝐺𝐺(𝑦𝑦|𝒔𝒔𝑙𝑙 , 𝒔𝒔𝑟𝑟 , 𝒊𝒊1, 𝒊𝒊2;𝜃𝜃) is the probability of correct prediction for input given the 
DHT parameter 𝜃𝜃, while 𝜆𝜆1 and 𝜆𝜆2 are the hyper-parameters to balance the two loss 
terms. 

3 Experiments 

3.1 Dataset and Preprocessing 

In this study, we verified the effectiveness of our proposed DHT model on the identifi-
cation of infants with prenatal opioid exposure for its high risk and increasingly grow-
ing prevalence. Specifically, we used an in-house high-quality MRI dataset including 
210 structural MRI scans (with both T1w and T2w images) (76 positive / 134 negative 
samples) acquired at different ages ranging from 6 to 439 days. The resolution of both 
T1w and T2w images is 0.8 × 0.8 × 0.8 𝑚𝑚𝑚𝑚3. All structural MR images were pro-
cessed by a state-of-the-art infant-tailored pipeline (https://www.ibeat.cloud/) [14-17], 
including co-registration, intensity inhomogeneity correction, skull stripping, cerebel-
lum removal, tissue segmentation, hemispheres separation, topological correction, and 
surface reconstruction. Eight types of morphological features, i.e., local gyrification 
index, average convexity, mean curvature, sulcal depth, cortical thickness, surface area, 
cortical volume, and myelin content were computed as the input feature for each vertex 
on the cortical surface. Then, all spherical surfaces were aligned onto their age-matched 
templates in the 4D Infant Cortical Surface Atlas (https://www.nitrc.org/projects/in-
fantsurfatlas/) [14, 16] and further resampled to have the same tessellation on the 6th 
subdivision of icosahedron with 40,962 vertices. 

3.2 Experimental Settings 

To validate our method, a 5-fold cross-validation strategy was employed. To quantita-
tively evaluate the performance, we applied four metrics to evaluate the classification 
performance, including accuracy (ACC), sensitivity (SEN), specificity (SPE), and the 
area under receiver operating characteristic curve (AUC), which are respectively de-
fined as: 𝐺𝐺𝐶𝐶𝐶𝐶 = (𝑇𝑇𝐺𝐺 + 𝑇𝑇𝑇𝑇) (𝑇𝑇𝐺𝐺 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐺𝐺 + 𝐹𝐹𝑇𝑇)⁄ ,  𝑆𝑆𝑆𝑆𝑇𝑇 = 𝑇𝑇𝐺𝐺 (𝑇𝑇𝐺𝐺 + 𝐹𝐹𝑇𝑇) ⁄ ,
𝑆𝑆𝐺𝐺𝑆𝑆 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐺𝐺), where TP, TN, FP and FN are denoted as true positive, true 
negative, false positive and false negative values, respectively. ACC, SEN, and SPE 
are calculated using the default threshold of 0.5. AUC is calculated on all possible pairs 
of true positive rate (𝑇𝑇𝐺𝐺𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑇𝑇 ) and false positive rate (𝐹𝐹𝐺𝐺𝑇𝑇 = 1 − 𝑆𝑆𝐺𝐺𝑆𝑆 ) by 

https://www.ibeat.cloud/
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changing the thresholds performed on the prediction results from our trained DHT net-
work. In the testing phase, the mean and standard deviation of the 5-fold results were 
reported. 

In our implementation, the feature representations produced by the five spherical 
transformer blocks in both 𝑬𝑬𝒔𝒔𝑙𝑙 and 𝑬𝑬𝒔𝒔𝑟𝑟 have 32, 32, 64, 64, and 128 channels, respec-
tively. Correspondingly, the latent space dimension for volume transformer is 128, i.e., 
𝐶𝐶 = 128. The classifier was designed as a two-layer MLP with the ReLU activation 
function and the dimension of {128, 1}. 

We implemented the model with PyTorch and accelerated by an NVIDIA GeForce 
RTX 3090 GPU. Adam was employed as optimizer with the weight decay of  10−4 and 
the learning rate was cyclically tuned within [10−6, 10−3]. The batch size was set to 
16. The maximum training epoch is 500. After comparison, we empirically set the hy-
perparameters as 𝜆𝜆1=0.001 and 𝜆𝜆2=1.0. During the training phase, we augmented the 
T1w and T2w images by random erasing [18] with the probability of 0.9. 

Table 1. Classification results obtained by the competing volume-based methods, surface-based 
methods, and our DHT. Mean and standard deviation values (mean ± std) of the testing results 
based on 5-fold cross validation were reported. 

 Method ACC (%) AUC (%) SEN (%) SPE (%) 

Volume 
ResNet3D 73.1 ± 11.2 64.0 ± 6.0 51.7 ± 35.3 76.0 ± 8.6 

GFNet 68.9 ± 12.4 55.8 ± 8.7 51.9 ± 24.7 75.7 ± 11.0 
DAMIDL 72.5 ± 6.1 61.0 ± 5.2 51.3 ± 25.9 74.5 ± 4.0 

Surface 
SUNet 73.6 ± 3.5 67.0 ± 4.7 56.0 ± 16.4 80.1 ± 8.5 

UGSCNN 79.0 ± 4.3 67.9 ± 14.6 35.0 ± 23.1 77.5 ± 4.0 
S-Transformer  76.7 ± 2.2 71.0 ± 8.4 65.2 ± 9.4 83.4 ± 6.9 

Both Proposed 80.8 ± 2.0 78.3 ± 9.6 78.6 ± 4.8 88.1 ± 4.5 
 

3.3 Results 

We compared our DHT with six baseline methods, including a conventional volume-
based method (i.e., ResNet3D [19]), two state-of-the-art volume-based methods for 
Alzheimer’s disease diagnosis (i.e., GFNet [3], DIMADL [2]), and three advanced cor-
tical surface-based methods (i.e., SUNet [11], UGSCNN [20], Spherical Transformer 
(S-Transformer) [4]). We implemented the competing methods based on their released 
code and took their encoders’ output as the latent representation with a two-layer per-
ceptron as the classifier.  

As shown in Table 1, our DHT method achieves better performance over baselines 
in identifying infants with prenatal drug exposure on all evaluation metrics (i.e., 
ACC=80.8%, SEN=78.6%, SPE=88.1%, and AUC=78.3%). Additionally, all surface-
based methods (i.e., SUNet, UGSCNN, and S-Transformer) outperform volume-based 
methods (i.e., ResNet3D and DAMIDL). This indicates that surface-based methods can 
capture more discriminative cortex features under the overwhelming dramatic brain 
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development during infancy. Meanwhile, among the baselines, the transformer based-
method (i.e., S-Transformer) also yields better results than other five methods in most 
cases (i.e., SEN=65.2%, SPE=83.4%, and AUC=71.0%). The main reason could be that 
the transformer-based method is more suitable for the surface-based classification task 
by formulating the long-range dependency and leveraging the parameters more effec-
tively and thus is less prone to overfitting with limited data size. Furthermore, compared 
with the advanced surface-based method UGSCNN, our DHT outperforms it by a minor 
margin (1.8%) in ACC. Nevertheless, our DHT has a superior improvement over 
UGSCNN on the sensitivity metric (SEN), which implies that our proposed method has 
much lower missed identification rate on the existence of prenatal drug exposure. 

To further evaluate the effectiveness of the components used in our study, we further 
compared the proposed DHT method with its counterparts, i.e., the model with either 
volume data (w/o Surface Data) or surface data (w/o Volume Data), and the model without 
disentanglement (w/o 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷). We performed w/o 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 by set-
ting 𝜆𝜆1=0. As shown in Table 2, each component proposed in our DHT contributes to 
the better identification performance. For instance, our DHT with disentanglement loss 
ℒ1 has higher accuracy than its counterpart w/o 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷. These results indicate 
that using hybrid volume-surface data with disentanglement strategy is more effective 
in enhancing the discriminative features for identification of infants with prenatal drug 
exposure, thus achieving better performance. 

Table 2. Ablation study of each component of DHT. Mean and standard deviation values (mean 
± std) of the testing results based on 5-fold cross validation were reported. 

Component ACC (%) AUC (%) SEN (%) SPE (%) 
w/o Surface Data 74.87 ± 12.32 71.36 ± 12.95 74.34 ± 17.61 81.60 ± 10.98 
w/o Volume Data 76.66 ± 2.15 71.02 ± 8.38 65.20 ± 9.40 83.41 ± 6.85 

w/o 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 77.83 ± 4.16 73.96 ± 6.86 71.91 ± 10.16 85.96 ± 5.48 
Proposed 80.84 ± 1.96 78.31 ± 9.59 78.63 ± 4.83 88.14 ± 4.51 

 
Based on our proposed model DHT, the prenatal opioid exposure identification rate 

of infants is about 80%, suggesting the plausible existence of imaging biomarkers. 
Moreover, our method can automatically identify potential abnormal locations in both 
MR images and cortical surfaces for researchers and doctors to conduct further analysis. 
That is, our method can suggest subject-specific discriminative brain regions, including 
relatively informative patches on both image volumes and cortical surfaces as shown 
in Fig. 2. Specifically, in Fig. 2(a), by analyzing the attention map in the Transformer 
layer 𝑶𝑶𝑖𝑖, we highlighted 50 potential discriminative volume patches with the patch size 
of 16 of two randomly selected subjects, which cover ~2% voxels in the whole image. 
It can be observed that most of selected patches are located at the deep non-cortical 
regions, which validates the effectiveness of our disentanglement mechanism that en-
forces the surface-based and volume-based representations to learn information from 
complementary brain regions. Moreover, we demonstrated the discriminative surface 
patches in Fig. 2(b) by analyzing the attention map in the Transformer layer 𝑶𝑶𝑠𝑠, and 
provided the population-based importance distribution of different morphological 
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features through Grad-Cam [21] in Fig. 2(c), which are in line with the findings in some 
conventional statistical studies. For example, in Fig. 2(b), the postcentral gyrus and the 
lateral occipital cortex illustrated relatively high importance, while some studies have 
observed the developmental abnormality of these regions in children with prenatal opi-
oid exposure [22, 23].  

 
Fig. 2. The illustrations of the discriminative regions of (a) the image volumes and (b) cortical 
surfaces, and (c) the importance distribution of morphological features on both hemispheres. 
Specifically, we calculated the local gyrification index (LGI), mean curvature (CUR), surface 
area (ARE), volume (VOL), sulcal depth (SDE), cortical thickness (THI), and myelin content 
(MYE) as features for each vertex. 

4 Conclusion 

In this paper, we proposed the first disentangled hybrid volume-surface transformer and 
applied it for automatic identification of infants with prenatal drug exposure. By em-
ploying the surface-based representation for the cerebral cortex and image-based rep-
resentation for deep noncortical regions, the abnormal changes affected by prenatal 
drug exposure can be effectively detected under the overwhelming dynamic and com-
plicated brain development during infancy. To boost the discriminative feature 
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representation, we introduced the Spherical Transformer and Vision Transformer, re-
spectively, which further embedded the hybrid data into a unified, comparable space. 
By disentangling their common and specific information, our DHT successfully cap-
tures the individualized representation of the infant brain for prenatal drug exposure 
identification. The superior identification rate compared to state-of-the-art methods 
demonstrates the advantages and effectiveness of our DHT, which is a powerful generic 
framework applicable for diagnosis of other brain disorders.    
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